White Paper

Making Profitable Digital Strides in Batch Processing: How to See ROI in Months When the Future is Unpredictable

Regardless of what our plans were in January 2020, nothing is the same in 2021 or the future. A digital strategy is no longer limited to a subset of impacted functions, but touches everyone’s goals organization-wide in some way, shape or form.

White Paper

Prescriptive Maintenance: Transforming Asset Performance Management

Prescriptive maintenance technology is transforming how companies increase asset availability. With more advance warning of equipment failures comes more opportunity to mitigate the negative impact of those events.

White Paper

Kickstarting Your Predictive Maintenance Journey with Existing Data and Resources

This white paper considers the challenges power generation operators face today and the forces that are driving demand for more proactive maintenance strategies. Gain insight into predictive maintenance that is being used to create a more comprehensive, correlated, efficient and effective environment for the collection, management,analysis and presentation of data. Discover the critical differences that make predictive maintenance a much more efficient and effective alternative to planned and condition based maintenance methodologies.

White Paper

デジタルツインとスマートエンタープライズ

世界中で、主要な組織が高度なデジタル技術を採用および実装しています。デジタルトランスフォーメーションの旅は、資産集約型産業、特にエネルギーおよび化学薬品ビジネスの性質を変えるでしょう。こうした状況下では、デジタルツイン(物理的な資産の仮想化されたコピーとその運用上の動作)が重要な役割を果たします。今日アスペンテックが描くデジタルツインの重要なコンセプトは、仮想データに対して洞察とアドバイスを提供するAIの力です。本ホワイトペーパーでは、これからのデジタルツイン戦略で重要になる鍵をご覧いただけます。

White Paper

インダストリアルIoTインサイト: Asset Healthスコア

この記事では AspenTech AIoT platform のIoTアナリティックスが、センサや稼働中デバイス の時系列データを使用し、設備資産のAsset Health スコアをどのように算出しているかを解説します。Asset Health スコアによって、サービスチームはリアルタイムで設備資産の健全性を把握で き、サービス業務やメンテナンスにかかる費用の削減につなげることができます。

White Paper

Prescriptive Maintenance: Transforming Asset Performance Management

Prescriptive maintenance technology is transforming how companies manage asset downtime. With more advance warning of equipment failures comes more opportunity to mitigate the negative impact of those events.

White Paper

Low-Touch Machine Learning is Fulfilling the Promise of Asset Performance Management

Traditional preventive maintenance alone cannot solve the problems of unexpected breakdowns. With asset performance management powered by low-touch machine learning, it’s now possible to extract value from decades of process, asset and maintenance data to optimize asset performance. In this white paper, learn how this disruptive technology deploys precise failure pattern recognition with very high accuracy to predict equipment breakdowns months in advance and advise on prescriptive maintenance. The paper also outlines five best practices for driving state-of-the-art reliability management to increase production and profitability.

White Paper

低接触式机器学习助力实现资产绩效管理

单独的传统预防型维护无法解决非预期停机问题。凭借低接触式机器学习所驱动的资产绩效管理,现在可能会从数十种程序、资产和维护数据中抽取相关数值,从而优化资产绩效。在本白皮书中,将学习这种插断性技术如何部署精确性故障模式识别,其具有较高的准确性,可以提前预测设备停机月数,并就约定的维护提供相关建议。本白皮书亦列述了驱动先进可靠性管理的五个最佳实践,以期增产提盈。

White Paper

Making Capital Project Management Decisions: Minimize Risk, Maximize Profitability

Making big capital project management decisions shouldn’t be left to subjective perceptions or over-simplified analysis. Decision-makers need quantifiable, trustworthy answers to make the most profitable decisions possible. Aspen Fidelis Reliability is a robust RAM analysis tool that can handle the real-world challenges of today's process industries. In this paper, learn how Fidelis enables you to maximize the economics of business decisions and accurately predict future asset performance of the whole system.

White Paper

Low-Touch Machine Learning is Fulfilling the Promise of Asset Performance Management

Traditional preventive maintenance alone cannot solve the problems of unexpected breakdowns. With asset performance management powered by low-touch machine learning, it’s now possible to extract value from decades of process, asset and maintenance data to optimize asset performance. This white paper describes five best practices for driving state-of-the-art reliability management to predict breakdowns months in advance—increasing production and profitability.

Page 1 of 2