White Paper

Delivering on the Promise of Prescriptive Maintenance

Leading asset-intensive companies are using prescriptive maintenance—powered by AI and machine learning—to unlock the value and productivity lying uncaptured in assets. Using a scalable, easy to implement prescriptive maintenance solution, companies can improve the accuracy of failure detection, increase the advance notification period of asset downtime events and reduce maintenance spend.

White Paper

履行处方式维护的承诺

领先的资产密集型公司正在使用人工智能和机器学习支持的规范性维护,以释放资产中未被捕获的价值和生产力。使用可扩展、易于实施的规定性维护解决方案,公司可以提高故障检测的准确性,延长资产停机事件的提前通知期,并减少维护开支。

White Paper

Electrification and the Path to Net Zero: The Crucial Role Digital Technology Will Play

Electrification is accelerating across all economic sectors as the world increases demand for resources, energy and sustainability. The shift from fossil-based systems to electric will drive change within the existing power infrastructure and beyond with new microgrids and self-generation at industrial sites.

White Paper

Making Profitable Digital Strides in Batch Processing: How to See ROI in Months When the Future is Unpredictable

Regardless of what our plans were in January 2020, nothing is the same in 2021 or the future. A digital strategy is no longer limited to a subset of impacted functions, but touches everyone’s goals organization-wide in some way, shape or form.

White Paper

インダストリアルIoTインサイト: Asset Healthスコア

この記事では AspenTech AIoT platform のIoTアナリティックスが、センサや稼働中デバイス の時系列データを使用し、設備資産のAsset Health スコアをどのように算出しているかを解説します。Asset Health スコアによって、サービスチームはリアルタイムで設備資産の健全性を把握で き、サービス業務やメンテナンスにかかる費用の削減につなげることができます。

White Paper

Low-Touch Machine Learning is Fulfilling the Promise of Asset Performance Management

Traditional preventive maintenance alone cannot solve the problems of unexpected breakdowns. With asset performance management powered by low-touch machine learning, it’s now possible to extract value from decades of process, asset and maintenance data to optimize asset performance. In this white paper, learn how this disruptive technology deploys precise failure pattern recognition with very high accuracy to predict equipment breakdowns months in advance and advise on prescriptive maintenance. The paper also outlines five best practices for driving state-of-the-art reliability management to increase production and profitability.

White Paper

Low-Touch Machine Learning is Fulfilling the Promise of Asset Performance Management

Traditional preventive maintenance alone cannot solve the problems of unexpected breakdowns. With asset performance management powered by low-touch machine learning, it’s now possible to extract value from decades of process, asset and maintenance data to optimize asset performance. This white paper describes five best practices for driving state-of-the-art reliability management to predict breakdowns months in advance—increasing production and profitability.

White Paper

低接触式机器学习助力实现资产绩效管理

单独的传统预防型维护无法解决非预期停机问题。凭借低接触式机器学习所驱动的资产绩效管理,现在可能会从数十种程序、资产和维护数据中抽取相关数值,从而优化资产绩效。在本白皮书中,将学习这种插断性技术如何部署精确性故障模式识别,其具有较高的准确性,可以提前预测设备停机月数,并就约定的维护提供相关建议。本白皮书亦列述了驱动先进可靠性管理的五个最佳实践,以期增产提盈。

White Paper

資料:手軽な機械学習が資産パフォーマンス管理(APM)の可能性を開く(日本語)

従来の対処的メンテナンスだけでは、不測の事態に対応できません。手軽な機械学習による資産パフォーマンス管理(APM) により、今や製造工場のスタッフが、何十年にもわたって蓄積してきた設計や運用データから容易に価値を引き出し、資産(主に装置などのハードウェア)のパフォーマンスをより適切に管理して最適化することが可能になりました。本書では、常識を覆すような画期的なテクノロジーがどのように精密な故障パターン認識を使い、高精度に装置の故障を数ヶ月も前に予測し、処方的なメンテナンスをガイダンスするかを説明しています。また、5つのベストプラクティス(運用方法)をご紹介し、最先端の信頼性管理による、さらなる生産効率および利益率の改善手法について述べています。

White Paper

Low-Touch Machine Learning is Fulfilling the Promise of Asset Performance Management

Traditional preventive maintenance alone cannot solve the problems of unexpected breakdowns. With asset performance management powered by low-touch machine learning, it’s now possible to extract value from decades of process, asset and maintenance data to optimize asset performance. In this white paper, learn how this disruptive technology deploys precise failure pattern recognition with very high accuracy to predict equipment breakdowns months in advance and advise on prescriptive maintenance. The paper also outlines five best practices for driving state-of-the-art reliability management to increase production and profitability.

Page 1 of 3