White Paper

数字孪生与智能企业

在全球范围内,各领先组织正在接纳并实施先进的数字化技术。数字化转型之旅将改变资产密集型行业(尤其是能源和化工企业)的性质。在这种情况下,数字孪生(实物资产及其操作行为的虚拟副本)将发挥关键作用。对于今天我们创建的数字孪生,一个关键概念是人工智能在提供虚拟数据相关见解和建议方面的作用。

White Paper

デジタルツインとスマートエンタープライズ

世界中で、主要な組織が高度なデジタル技術を採用および実装しています。デジタルトランスフォーメーションの旅は、資産集約型産業、特にエネルギーおよび化学薬品ビジネスの性質を変えるでしょう。こうした状況下では、デジタルツイン(物理的な資産の仮想化されたコピーとその運用上の動作)が重要な役割を果たします。今日アスペンテックが描くデジタルツインの重要なコンセプトは、仮想データに対して洞察とアドバイスを提供するAIの力です。本ホワイトペーパーでは、これからのデジタルツイン戦略で重要になる鍵をご覧いただけます。

White Paper

Low-Touch Machine Learning is Fulfilling the Promise of Asset Performance Management

Traditional preventive maintenance alone cannot solve the problems of unexpected breakdowns. With asset performance management powered by low-touch machine learning, it’s now possible to extract value from decades of process, asset and maintenance data to optimize asset performance. In this white paper, learn how this disruptive technology deploys precise failure pattern recognition with very high accuracy to predict equipment breakdowns months in advance and advise on prescriptive maintenance. The paper also outlines five best practices for driving state-of-the-art reliability management to increase production and profitability.

White Paper

資料:手軽な機械学習が資産パフォーマンス管理(APM)の可能性を開く(日本語)

従来の対処的メンテナンスだけでは、不測の事態に対応できません。手軽な機械学習による資産パフォーマンス管理(APM) により、今や製造工場のスタッフが、何十年にもわたって蓄積してきた設計や運用データから容易に価値を引き出し、資産(主に装置などのハードウェア)のパフォーマンスをより適切に管理して最適化することが可能になりました。本書では、常識を覆すような画期的なテクノロジーがどのように精密な故障パターン認識を使い、高精度に装置の故障を数ヶ月も前に予測し、処方的なメンテナンスをガイダンスするかを説明しています。また、5つのベストプラクティス(運用方法)をご紹介し、最先端の信頼性管理による、さらなる生産効率および利益率の改善手法について述べています。

White Paper

Low-Touch Machine Learning is Fulfilling the Promise of Asset Performance Management

Traditional preventive maintenance alone cannot solve the problems of unexpected breakdowns. With asset performance management powered by low-touch machine learning, it’s now possible to extract value from decades of process, asset and maintenance data to optimize asset performance. In this white paper, learn how this disruptive technology deploys precise failure pattern recognition with very high accuracy to predict equipment breakdowns months in advance and advise on prescriptive maintenance. The paper also outlines five best practices for driving state-of-the-art reliability management to increase production and profitability.

White Paper

Low-Touch Machine Learning is Fulfilling the Promise of Asset Performance Management

Traditional preventive maintenance alone cannot solve the problems of unexpected breakdowns. With asset performance management powered by low-touch machine learning, it’s now possible to extract value from decades of process, asset and maintenance data to optimize asset performance. This white paper describes five best practices for driving state-of-the-art reliability management to predict breakdowns months in advance—increasing production and profitability.

White Paper

Process Plant Design: The High Cost of Slow Decisions

Risk analysis is generally performed in the later stages of design to prove that the plant will deliver what it’s supposed to. However, some clever practitioners are now employing it much earlier to speed up decision-making and lock in superior design choices when they really matter at the beginning of the project. In this paper, learn how Aspen Fidelis Reliability uses a systems approach that allows you to quantify the true value or cost of any design or improvement project, maintenance change, operations improvement or supply chain constraint.

White Paper

Making Capital Project Management Decisions: Minimize Risk, Maximize Profitability

Making big capital project management decisions shouldn’t be left to subjective perceptions or over-simplified analysis. Decision-makers need quantifiable, trustworthy answers to make the most profitable decisions possible. Aspen Fidelis Reliability is a robust RAM analysis tool that can handle the real-world challenges of today's process industries. In this paper, learn how Fidelis enables you to maximize the economics of business decisions and accurately predict future asset performance of the whole system.

White Paper

The Digital Twin and the Smart Enterprise

Across the globe, leading organizations are embracing and implementing advanced digital technologies. The digital transformation journey will change the nature of asset intensive industries, particularly the energy and chemicals businesses. In that context, digital twins — virtualized copies of physical assets and their operating behaviors — will play key roles. For the digital twins we create today, a key concept is the power of AI in providing insight and advice against the virtual data. Download this white paper to learn about these essential keys to your digital twin strategy:

White Paper

低接触式机器学习助力实现资产绩效管理

单独的传统预防型维护无法解决非预期停机问题。凭借低接触式机器学习所驱动的资产绩效管理,现在可能会从数十种程序、资产和维护数据中抽取相关数值,从而优化资产绩效。在本白皮书中,将学习这种插断性技术如何部署精确性故障模式识别,其具有较高的准确性,可以提前预测设备停机月数,并就约定的维护提供相关建议。本白皮书亦列述了驱动先进可靠性管理的五个最佳实践,以期增产提盈。

Page 1 of 2