White Paper

Prescriptive Maintenance: Transforming Asset Performance Management

Prescriptive maintenance technology is transforming how companies manage asset downtime. With more advance warning of equipment failures comes more opportunity to mitigate the negative impact of those events.

White Paper

Improving Food and Beverage Production Quality and Accelerating Digitalization

What role can digitalization play in production quality and increasing your competitive advantage? By enabling greater visibility into raw materials and process conditions, multivariate analytics software presents a fast track to improving overall product quality. In this white paper, discover how several food and beverage processors are using multivariate analytics software to turn existing data into actionable insights—enabling them to reduce off-spec product, minimize product rework needs, and shorten time to market.

White Paper

Low-Touch Machine Learning is Fulfilling the Promise of Asset Performance Management

Traditional preventive maintenance alone cannot solve the problems of unexpected breakdowns. With asset performance management powered by low-touch machine learning, it’s now possible to extract value from decades of process, asset and maintenance data to optimize asset performance. In this white paper, learn how this disruptive technology deploys precise failure pattern recognition with very high accuracy to predict equipment breakdowns months in advance and advise on prescriptive maintenance. The paper also outlines five best practices for driving state-of-the-art reliability management to increase production and profitability.

White Paper

資料:手軽な機械学習が資産パフォーマンス管理(APM)の可能性を開く(日本語)

従来の対処的メンテナンスだけでは、不測の事態に対応できません。手軽な機械学習による資産パフォーマンス管理(APM) により、今や製造工場のスタッフが、何十年にもわたって蓄積してきた設計や運用データから容易に価値を引き出し、資産(主に装置などのハードウェア)のパフォーマンスをより適切に管理して最適化することが可能になりました。本書では、常識を覆すような画期的なテクノロジーがどのように精密な故障パターン認識を使い、高精度に装置の故障を数ヶ月も前に予測し、処方的なメンテナンスをガイダンスするかを説明しています。また、5つのベストプラクティス(運用方法)をご紹介し、最先端の信頼性管理による、さらなる生産効率および利益率の改善手法について述べています。

White Paper

Low-Touch Machine Learning is Fulfilling the Promise of Asset Performance Management

Traditional preventive maintenance alone cannot solve the problems of unexpected breakdowns. With asset performance management powered by low-touch machine learning, it’s now possible to extract value from decades of process, asset and maintenance data to optimize asset performance. In this white paper, learn how this disruptive technology deploys precise failure pattern recognition with very high accuracy to predict equipment breakdowns months in advance and advise on prescriptive maintenance. The paper also outlines five best practices for driving state-of-the-art reliability management to increase production and profitability.

White Paper

Low-Touch Machine Learning is Fulfilling the Promise of Asset Performance Management

Traditional preventive maintenance alone cannot solve the problems of unexpected breakdowns. With asset performance management powered by low-touch machine learning, it’s now possible to extract value from decades of process, asset and maintenance data to optimize asset performance. This white paper describes five best practices for driving state-of-the-art reliability management to predict breakdowns months in advance—increasing production and profitability.

White Paper

デジタルツインとスマートエンタープライズ

世界中で、主要な組織が高度なデジタル技術を採用および実装しています。デジタルトランスフォーメーションの旅は、資産集約型産業、特にエネルギーおよび化学薬品ビジネスの性質を変えるでしょう。こうした状況下では、デジタルツイン(物理的な資産の仮想化されたコピーとその運用上の動作)が重要な役割を果たします。今日アスペンテックが描くデジタルツインの重要なコンセプトは、仮想データに対して洞察とアドバイスを提供するAIの力です。本ホワイトペーパーでは、これからのデジタルツイン戦略で重要になる鍵をご覧いただけます。

White Paper

インダストリアルIoTインサイト: Asset Healthスコア

この記事では AspenTech AIoT platform のIoTアナリティックスが、センサや稼働中デバイス の時系列データを使用し、設備資産のAsset Health スコアをどのように算出しているかを解説します。Asset Health スコアによって、サービスチームはリアルタイムで設備資産の健全性を把握で き、サービス業務やメンテナンスにかかる費用の削減につなげることができます。

White Paper

Prescriptive Maintenance: Transforming Asset Performance Management

Prescriptive maintenance technology is transforming how companies manage asset downtime. With more advance warning of equipment failures comes more opportunity to mitigate the negative impact of those events.

White Paper

Use Advanced Simulation to Improve Processes Involving Solids

Whether particles are being formed, reduced in size, enlarged, participating in reactions, or just being separated from a fluid stream, ignoring or poorly modeling the solids processing steps may lead to lost opportunities, including cost reductions and quality improvements. The main challenges that arise when optimizing or troubleshooting a solids process include inefficient designs due to separate modeling of fluids and solids sections, overdesign of equipment, high-energy demands, reduced yields and quality variability. Modeling the solids section of a process is important for many common processes including specialty chemicals, agrochemicals, metals and mining, pharmaceuticals, biofuels and more. This paper describes the approach for incorporating granular solids and the corresponding solids processing steps when modeling processes.

Page 1 of 2