(aspentech | Study Guide

Aspen Plus[®] with Aspen Properties[®]

Study Guide for Certification

Aspen Knowledge™ | Learn. Apply. Succeed.

Exam Scope for Aspen Plus with Physical Properties

- Properties Environment
- □ Simulation Environment
- □ Convergence
- □ Reporting
- Physical Properties
- Ideal Gas and Liquid
- Physical Property
 Parameters
- Property Sets
- Activity Coefficient Models
- Equations of State
- Electrolyte Property Methods
- Data Regression
- □ Solid-Fluid Equilibrium
- □ And More....

Grading

Grade	Weight
Multiple choice	40%
questions	40%
Lab task	60%
Total	100%

AspenTech Call | Email | Chat

Prove Your Credibility

component parameters, and data regression.

Practice

AspenTech training is highly recommended though not required.

This guide contains 100% coverage of all objectives for the certification exam. You can use it as both a study tool and an on-the job reference

(read pages 2-11).

Step 2: Practice before exam

This guide contains 100% coverage of all objectives for the Aspen Plus certification exam. You can use as both a study tool and an on-the job reference.

Get Certified

In-person and remote testing are available. Please make sure that you select the correct Location/Time Zone.

After passing the exam you will receive an email to post your certificate and digital badge on social media, which is a cross-industry recognition of technical skills you may share on LinkedIn, as well as in your email signature. View the instructions on how to post your credentials on LinkedIn profile.

(aspentech | Study Guide

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE FOR ASPEN PLUS	
Explore	Startup Template	Select a startup template to begin a new simulation	
Properties Environment	Component List	Create a component list	
		Identify the different component databases available	
	Physical Property	List the steps to establish physical properties	
	Method	Identify issues involved in the choice of a property method	
		Define a property method	
		Identify the different property methods available	
		Explain the need for Henry's components	
	Reporting	Summarize the different types of physical property data	
	-	List the built-in analyses used for reporting physical properties	
		Retrieve pure component properties from built in property databases	
Explore	Unit Sets	Recognize the default unit sets	
Simulation Environment		Customize unit sets	
	Manipulate Flowsheet	Explain how unit operation models are organized	
		Add unit operations to the flowsheet from the model palette	
		Connect material streams to unit operation blocks	
		Configure and customize flowsheet user preferences, options and default settings	
	Unit Operations		
	Mixer/Splitters	Explain when to use the SSplit block in a flowsheet	
	Separators	Identify the key differences in the three separator blocks Flash2, Flash3 and Decanter	

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE FOR ASPEN PLUS
Explore Separators Simulation	Separators	List which unit operation blocks can be used to specify how the components split to the outlet streams
Environment		Configure a component splitter to separate component steams based on split fractions specified
	Exchangers	Identify the heat exchanger model used to model convective or radiant heat transfer across a surface
		Select the heat exchanger model that can be integrated with Aspen Exchanger Design and Rating (EDR) tools
		Explain how to specify a Heater block outlet stream to the dew point condition
		Recognize how the use of a Heat stream connected to a Heater block affects the input specifications
		Perform rigorous heat transfer calculations using EDR
	Columns	List the column unit operations that incorporate shortcut methods for Vapor/Liquid calculations
		Identify which unit operation block is used for most distillation column models
		Determine parameters required to solve a column Identify different types of column specifications available in RadFrac
		Identify different types of column specifications available in RadFrac
		Explain the function of the Column Analysis tool
	-	List the types of rigorous vapor-liquid fractionation operations that RadFrac can simulate
		Build different types of column using RadFrac and manipulate the column specifications to meet the process objective
		Plot temperature and composition results vs stage for a column
		Explain how to account for non-equilibrium stages in Rad-Frac

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE FOR ASPEN PLUS
Explore Simulation	Columns	Describe the difference between On-Stage and Above-Stage
Environment	Reactors	List the classes of reactor unit operations available in Aspen Plus
		Describe the characteristics of balanced based reactor models
		Explain how heat of reaction is calculated in Aspen Plus
		Identify which reactor models allow both equilibrium and kinetic based reactions
		Identify the option in RGibbs to insure both vapor and liquid phases are considered
		Summarize the options for entering custom reaction kinetics
		List the options for entering reaction data for a reversible reaction
		Identify the reactor models that require a Reaction ID to describe reactions
		Recognize which reaction model type that allows a mixture of Power Law, Equilibrium, LHHW and Custom reactions
		Build a Reaction ID to be used in a kinetic based reactor
	Pressure Changers	List situations where pressure changer blocks need to be included in a flowsheet
		Explain the difference between design and rating specifications for pump and compressor
		Describe the options for entering performance curve data for pump and compressor models
		Build a simple flowsheet for an expander/compressor
		Identify the main difference between the pipe and pipeline unit operation

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE FOR ASPEN PLUS
Explore Simulation	Manipulators	List unit operations models that manipulate streams
Environment		Build a flowsheet the duplicates a feed stream that is processed in different types of process units
	User Models	List the options to write custom unit operation models
		Identify the unit operation block that is a container for simulation objects such as streams, unit operations, etc.
Convergence	Control Panel	Analyze error and warning messages
		Recognize simulation sequence
	-	Identify automatically generated convergence blocks
		Identify tear streams
		Explain the concept of error/tolerance
	Convergence Methods	Configure the default tear convergence settings to increase maximum number of iterations
	-	List the variables tested for tear stream convergence
		List the default convergence methods
		Describe the purpose of the Secant method bracketing strategy
	Tear Stream	Specify a tear stream for a convergence block
		Illustrate reconciling of a tear stream

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE FOR ASPEN PLUS	
Convergence	Convergence Results	Specify a tighter global flash tolerance	
		Analyze the pattern of the graphical convergence history using the convergence monitor	
		Identify the number of iterations made to reach convergence	
		Illustrate the reduction of simulation time by reconciling a block	
	Troubleshooting	Recognize the various troubleshooting tips in the Help documentation	
		Troubleshoot the prepared simulations using common methods	
Documentation	General	Use the Help menu	
Explore	Analysis Tools		
Simulation Environment	Sensitivity	List steps to create a new sensitivity	
		Identify variables that can be defined as manipulated variables	
		Analyze sensitivity results to find optimal operating conditions	
		Identify if a design specification solution is feasible using sensitivity	
		Recognize case studies	
		Plot the results of a sensitivity block	
		Explain tabulated Fortran expressions	

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE FOR ASPEN PLUS
Explore Simulation	Explore Design Specification Simulation Environment	Develop a design specification to get desired results
		Explain why design specification produces iteration
		List the approaches to view design specification results
		Analyze convergence issue caused by design specifications
		Troubleshoot convergence issue by changing default settings
	Calculators	Develop a calculator block with either Fortran syntax or Excel functions
		Recognize basic Fortran syntax and Excel functions
		Explain the use of parameters and local parameters
		Identify import variables and export variables
		Define location of a calculator block in an execution sequence
		Resolve errors caused by a calculator
Reporting	Stream Summary	Customize stream summary tables and save as new templates
		List steps to create new templates
		Explain how to add additional physical properties to the stream summary
		Explain the use for all options in Edit Stream Summary Template window
		Send stream summary to Excel and to Flowsheet (linked with Aspen Plus)
		Describe Import/Export user stream templates features

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE FOR ASPEN PLUS
Reporting	Custom Tables	Create custom tables
		Use custom tables on the flowsheet (as icon)
	Global Data	Display global stream data on flowsheets
		Display user-defined global stream data on flowsheets
		Explain how to change global stream data displayed decimal digits
	Property Sets	List steps to create new property sets
		Explain the use of property qualifiers
		List where to use property sets
	Model Summary	Customize odel Summary table
		Send Model Summary table to Excel (linked with Aspen Plus)
	Miscellaneous	Use Check Status to check detailed information about errors or warning
		Report control panel messages in History file
		Report printable text file of input data and simulation results
Physical Properties	Properties required by unit operations	Identify physical properties required for a unit operation such as Heater block
	Navigation in user interface	Select components from databanks
	Specify base property method	Select physical property method method

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE FOR PHYSICAL PROPERTIES
	Calculation of vapor phase enthalpy	Identify the parameters required for the calculation of vapor phase enthalpy (pure component)
Ideal Gas and Ideal Liquid	Calculation of vapor pressure	Identify the parameters required for the calculation of the liquid saturation pressure
	Calculation of liquid enthalpy	Identify the parameters required for the calculation of the liquid enthalpy (pure component)
	Type of pure component parameters	Identify the two types of pure component parameters
Physical Property Parameters	Entering parameters	Modify the parameters for a pure component and evaluate heat capacity of vapor and saturation pressure
	Reviewing parameters	Retrieve the parameters of pure components from the databanks
	Pure component analysis	Create a pure component analysis
Property Sets and Property Analysis	Mixture analysis	Create a mixture analysis to report mixture liquid density at constant pressure and temperature, vary the composition
	common non-ideal deviation	List phenomena which demonstrate a mixture exhibits non-ideal behaviour
	enthalpy	Explain the relation b/w activity and excess enthalpy
Activity Coefficient Models	common models	List a few activity coefficients models commonly used for process simulation
	binary parameters	Summarize binary parameters and retrieve the temperature range of the experimental data used for the regression
UNIFAC	Basis	Explain the concept used for the development of UNIFAC method
	common models	List a few models like UNIFAC

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE FOR PHYSICAL PROPERTIES
Henry's Law	Theory	Explain why Henry's law is required with activity coefficient models
	Application	Evaluate the liquid-vapor equilibrium for water/N2 at 25 C, 1 bar, 50%mol water / 50%mol N2 (total)
	concept	Explain what an equation of state is (relation b/w temperature, pressure and molar volume/density)
Equations of State	Binary interaction parameters	Explain how binary interaction parameters are used in equation of state
	common models	List a few commonly used equations of state models
Advanced Equations of State common models		List a few commonly used equations of state models
Selection of Physical Property Methods	specification	Identify the different places one can specify the property method for the calculation of a block
Electrolyte Property	components	Identify the different component types typically present in electrolyte mixture
Methods	chemistry	Identify the reaction types one can specify in a chemistry
	objective	Describe what is the objective of data regression
	experimental data	Identify the purpose of the USAGE column in experimental data specifications
	regression	Explain the purpose of the "evaluation" mode
Data Regression	results	Explain the points to check to validate the quality of a data regression run
	application	Perform regression of pure component data (saturation pressure with Antoine)
	application	Perform VLE regression of TXY data
Dreparty Caratast	purpose	Explain the purpose of parameter estimation
Property Constant Estimation	methods	Identify the two main approaches available for estimation (PCES and NIST)

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE FOR PHYSICAL PROPERTIES
Property Constant Estimation	methods	Identify the two main approaches available for estimation (PCES and NIST)

About Aspen Technology

Aspen Technology (AspenTech) is a leading software supplier for optimizing asset performance. Our products thrive in complex, industrial environments where it is critical to optimize the asset design, operation and maintenance lifecycle. AspenTech uniquely combines decades of process modeling expertise with machine learning. Our purpose-built software platform automates knowledge work and builds sustainable competitive advantage by delivering high returns over the entire asset lifecycle. As a result, companies in capital-intensive industries can maximize uptime and push the limits of performance, running their assets safer, greener, longer and faster. Visit AspenTech.com to find out more.

© 2020 Aspen Technology, Inc. AspenTech[®], Aspen[®], aspenONE[®], the Aspen leaf logo, the aspenONE logo and OPTIMIZE are trademarks of Aspen Technology, Inc. All rights reserved. AT-05200