(aspentech | Study Guide

Aspen Plus[®] with Aspen Shell & Tube Exchanger[®] Study Guide for Certification

Aspen Knowledge[™] | Learn. Apply. Succeed.

Exam Scope for Aspen Plus with EDR

- Properties
 Environment
- Simulation
 Environment
- □ Convergence
- □ Reporting
- Calculation Models
- Physical Properties
- Geometry
- □ Results
- Documentation

Grading

Grade	Weight	
Multiple choice	10%	
questions	4070	
Lab task	60%	
Total	100%	

AspenTech Call | Email | Chat

Prove Your Credibility

An Aspen Plus Certified demonstrates skills required to build models and interpret results using Aspen Plus with Aspen Exchanger Design and Rating (EDR). This person will also demonstrate skills in advanced topics such as convergence, troubleshooting, and heat exchanger design using the EDR interface.

Practice

AspenTech training is highly recommended though not required.

This guide contains 100% coverage of all objectives for the certification exam. You can use it as both a study tool and an on-the job reference

(read pages 2-12).

Get Certified

In-person and remote testing are available. Please make sure that you select the correct Location/Time Zone.

After passing the exam you will receive an email to post your certificate and digital badge on social media, which is a cross-industry recognition of technical skills you may share on LinkedIn, as well as in your email signature. View the instructions on how to post your credentials on LinkedIn profile.

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE FOR ASPEN PLUS
Explore Properties Environment	Startup Template	Select a startup template to begin a new simulation
	Component List	Create a component list
		Identify the different component databases available
	Physical Property	List the steps to establish physical properties
	Method	Identify issues involved in the choice of a property method
		Define a property method
		Identify the different property methods available
		Explain the need for Henry's components
	Reporting	Summarize the different types of physical property data
		List the built-in analyses used for reporting physical properties
		Retrieve pure component properties from built in property databases
Explore	Unit Sets	Recognize the default unit sets
Simulation		Customize unit sets
Environment	Manipulate Flowsheet	Explain how unit operation models are organized
		Add unit operations to the flowsheet from the model palette
		Connect material streams to unit operation blocks
		Configure and customize flowsheet user preferences, options and default settings
		Unit Operations
	Mixer/Splitters	Explain when to use the SSplit block in a flowsheet
	Separators	Identify the key differences in the three separator blocks Flash2, Flash3 and Decanter

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE FOR ASPEN PLUS
Explore Simulation	Separators	List which unit operation blocks can be used to specify how the components split to the outlet streams
Environment		Configure a component splitter to separate component steams based on split fractions specified
	Exchangers	Identify the heat exchanger model used to model convective or radiant heat transfer across a surface
		Select the heat exchanger model that can be integrated with Aspen Exchanger Design and Rating (EDR) tools
		Explain how to specify a Heater block outlet stream to the dew point condition
		Recognize how the use of a Heat stream connected to a Heater block affects the input specifications
		Perform rigorous heat transfer calculations using EDR
	Columns	List the column unit operations that incorporate shortcut methods for Vapor/Liquid calculations
		Identify which unit operation block is used for most distillation column models
		Determine parameters required to solve a column Identify different types of column specifications available in RadFrac
		Identify different types of column specifications available in RadFrac
		Explain the function of the Column Analysis tool
		List the types of rigorous vapor-liquid fractionation operations that RadFrac can simulate
		Build different types of column using RadFrac and manipulate the column specifications to meet the process objective
		Plot temperature and composition results vs stage for a column
		Explain how to account for non-equilibrium stages in Rad-Frac

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE FOR ASPEN PLUS
Explore	Columns	Describe the difference between On-Stage and Above-Stage
Environment	Reactors	List the classes of reactor unit operations available in Aspen Plus
		Describe the characteristics of balanced based reactor models
		Explain how heat of reaction is calculated in Aspen Plus
		Identify which reactor models allow both equilibrium and kinetic based reactions
		Identify the option in RGibbs to insure both vapor and liquid phases are considered
		Summarize the options for entering custom reaction kinetics
		List the options for entering reaction data for a reversible reaction
	Pressure Changers	Identify the reactor models that require a Reaction ID to describe reactions
		Recognize which reaction model type that allows a mixture of Power Law, Equilibrium, LHHW and Custom reactions
		Build a Reaction ID to be used in a kinetic based reactor
		List situations where pressure changer blocks need to be included in a flowsheet
		Explain the difference between design and rating specifications for pump and compressor
		Describe the options for entering performance curve data for pump and compressor models
		Build a simple flowsheet for an expander/compressor
		Identify the main difference between the pipe and pipeline unit operation

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE FOR ASPEN PLUS
Explore	Manipulators	List unit operations models that manipulate streams
Environment		Build a flowsheet the duplicates a feed stream that is processed in different types of process units
	User Models	List the options to write custom unit operation models
		Identify the unit operation block that is a container for simulation objects such as streams, unit operations, etc.
Convergence	Control Panel	Analyze error and warning messages
		Recognize simulation sequence
		Identify automatically generated convergence blocks
		Identify tear streams
		Explain the concept of error/tolerance
	Convergence Methods	Configure the default tear convergence settings to increase maximum number of iterations
		List the variables tested for tear stream convergence
		List the default convergence methods
		Describe the purpose of the Secant method bracketing strategy
	Tear Stream	Specify a tear stream for a convergence block
		Illustrate reconciling of a tear stream

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE FOR ASPEN PLUS
Convergence	Convergence Results	Specify a tighter global flash tolerance
		Analyze the pattern of the graphical convergence history using the convergence monitor
		Identify the number of iterations made to reach convergence
		Illustrate the reduction of simulation time by reconciling a block
	Troubleshooting	Recognize the various troubleshooting tips in the Help documentation
		Troubleshoot the prepared simulations using common methods
Documentation	General	Use the Help menu
Explore		Analysis Tools
Simulation Environment	Sensitivity	List steps to create a new sensitivity
		Identify variables that can be defined as manipulated variables
		Analyze sensitivity results to find optimal operating conditions
		Identify if a design specification solution is feasible using sensitivity
		Recognize case studies
		Plot the results of a sensitivity block
		Explain tabulated Fortran expressions

(aspentech | Study Guide

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE FOR ASPEN PLUS
Explore Simulation	Design Specification	Develop a design specification to get desired results
Environment		Explain why design specification produces iteration
		List the approaches to view design specification results
		Analyze convergence issue caused by design specifications
		Troubleshoot convergence issue by changing default settings
	Calculators	Develop a calculator block with either Fortran syntax or Excel functions
		Recognize basic Fortran syntax and Excel functions
		Explain the use of parameters and local parameters
		Identify import variables and export variables
		Define location of a calculator block in an execution sequence
		Resolve errors caused by a calculator
Reporting	Stream Summary	Customize stream summary tables and save as new templates
		List steps to create new templates
		Explain how to add additional physical properties to the stream summary
		Explain the use for all options in Edit Stream Summary Template window
		Send stream summary to Excel and to Flowsheet (linked with Aspen Plus)
		Describe Import/Export user stream templates features

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE FOR ASPEN PLUS
Reporting	Custom Tables	Create custom tables
		Use custom tables on the flowsheet (as icon)
	Global Data	Display global stream data on flowsheets
		Display user-defined global stream data on flowsheets
		Explain how to change global stream data displayed decimal digits
	Property Sets	List steps to create new property sets
		Explain the use of property qualifiers
		List where to use property sets
	Model Summary	Customize odel Summary table
		Send Model Summary table to Excel (linked with Aspen Plus)
	Miscellaneous	Use Check Status to check detailed information about errors or warning
		Report control panel messages in History file
		Report printable text file of input data and simulation results

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE FOR EDR
Calculation	General Options	Identify the available calculation modes
Modes		Identify where in the UI to select/change the calculation mode
	Design mode	Identify required inputs and expected outputs
		Identify the two options for optimization (area or cost)
		Define area ratio
		Identify key variables considered in the design algorithm (area ratio, pressure ratio, TEMA limits for rho-V2 and unsupported length, vibration)
		Identify how to enter process and/or geometry limits
	Rating Mode	Identify required inputs and expected outputs
		Interpret area ratio results
	Simulation Mode	Identify required inputs and expected outputs
		Interpret area ratio results
	Find Fouling	Identify required inputs and expected outputs
		Interpret area ratio results
	Overall	Identify , for a given problem statement, the applicable calculation mode and the required input
Physical Properties	Physical Property Packages	Identify the different physical property packages options (B-JAC, COMThermo, Aspen Properties, User Specified)
		Identify external sources to import properties (PSF, HYSYS or A+, Aspen Properties file)
	Property Methods	Identify categories of property methods (Ideal, EOS, Activity models) and general application for each

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE FOR EDR
Physical Properties	Overall	Explain the importance of the temperature range/# of points and pressure levels in physical properties calculation
		Identify , for a given problem statement, the applicable physical property package and the appropriate property method
Geometry	Basic configuration	Identify key options that are always selected by the user (not changed by EDR): TEMA type, hot fluid location, exchanger orientation, baffle type, etc.
		Identify applications for different shell types
		Identify arguments to be considered during hot fluid location selection (high pressure, hazardous fluid, fouling)
	Geometry	Recognize key geometry (tube ID/OD, shell ID/OD, # of tubes, # passes, tube pitch, pattern, tube length)
		Identify EDR standards for geometry (TEMA, ASME, most common commercial dimensions)
		Identify Non-TEMA configurations (double pipe, hairpin)
Results	Warning/Messages	Identify the types of messages displayed by EDR and its importance (errors, warnings, advisories, notes)
		Interpret, given a particular file, the error/warning messages
		Develop , given your previous interpretation, some modifications that could potentially help fixing the error/warning messages
	TEMA sheet	Recognize , from a list of outputs, which could be found in the TEMA sheet
		Explain how to export TEMA sheet to Excel
	Thermal	Interpret, for a given simulation, area ratio value

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE FOR EDR
Results	Thermal	State , for a given simulation, the effective mean temperature difference
		State , for a given simulation, the tube side and shell side overall film coefficients
		Interpret , given a simulation, which side represents the greater contribution to the overall HTC
Results	Hydraulic	Identify the three contributions to the overall pressure drop (frictional, momentum change, gravitational)
		State, given a simulation, pressure drop on each side
		Identify , given the same file, which pressure drop mechanism has the greater contribution on each side
		Identify , given the same file, which part of the exchanger represents the greater contribution to pressure on each side
		Identify on which part of the exchanger the highest velocity is achieved on each side
		Identify , given a simulation, if there are Rho-V2 TEMA limits violations
	Mechanical	Identify the two types of vibration analyzed and reported by EDR
		Identify , within a provided list, which factors or mechanisms can influence the vibration assessment
		Analyze , the vibration assessment in a given simulation and develop a plan to fix such vibration issues
		Identify , within the tube layout of a given simulation, the tubes analyzed for the vibration assessment
		Identify , within the setting plan of a given simulation, the inlet and outlet nozzles for both sides

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE FOR EDR
Results	Mechanical	Identify, given a simulation, a geometry parameter calculated by the program (instead of being specified)
		State, given a simulation, the total cost of the unit (all shells)
	Calculation Details	Interpret , given a simulation, what information could be retrieved from the temperature profile of each side (in which region a phase change is taking place, slope close to zero)
Documentation	Help Guide	State the definition of a given concept by searching it in the Help Guide
	HTFS Research Network	Navigate to a HTFS Design Report and state the title

About Aspen Technology

Aspen Technology (AspenTech) is a leading software supplier for optimizing asset performance. Our products thrive in complex, industrial environments where it is critical to optimize the asset design, operation and maintenance lifecycle. AspenTech uniquely combines decades of process modeling expertise with machine learning. Our purpose-built software platform automates knowledge work and builds sustainable competitive advantage by delivering high returns over the entire asset lifecycle. As a result, companies in capital-intensive industries can maximize uptime and push the limits of performance, running their assets safer, greener, longer and faster. Visit AspenTech.com to find out more.

© 2020 Aspen Technology, Inc. AspenTech[®], Aspen[®], aspenONE[®], the Aspen leaf logo, the aspenONE logo and OPTIMIZE are trademarks of Aspen Technology, Inc. All rights reserved. AT-05200