Modeling Fluidized Beds and Pneumatic Conveying of Solids with Aspen Plus V8

Claus Reimers
Product Management, AspenTech

Solids Process Modeling Webinar
September 24, 2013

Hosted by:
Jennifer Dyment and Ron Beck,
Product Marketing, AspenTech
Ongoing Series of Technical Webinars
Engineering webinars for education and best practices

RECENT WEBINARS:

- Modeling Solids Dryers and Granulators with Aspen Plus V8 (Technical) – April 2013

UPCOMING WEBINARS OF INTEREST:

- Model Plate Fin Exchangers in Aspen HYSYS Simulators featuring Petrofac – October 8th 2013
aspenONE Engineering
Best-in-class engineering solutions in an integrated workflow
Agenda

- Introduction
- Fluidized Bed
 - Circulating Fluidized Bed Demo
- Pneumatic Conveying
 - Dilute Phase Conveying Demo
 - Dense Phase Conveying Demo
- Questions & Discussion
Why is Modeling Solids Important?

Specialty & Agricultural Chemical Process
Fertilizers, ChlorAlkali, pTA, Silicones

- Fluid Raw Material
- Reactions (liquid/gas)
- Separation (liquid/gas)
- Crystallization (liquid/solid)
- Drying (solids/gas)
- Solid Product

Extractive Industry Process
Coal, Oil Sands, Cement, Phosphates, Alumina

- Mineral Raw Material
- Grinding (solids)
- Classifying (fluid/solid)
- Reactions (fluid/solid)
- Separation (solids/liquid/gas)
- Fluid Products
Modeling Processes with Solids
Traditional Approach

- Two Models
- Manual Data Transfer
- Inconsistent Properties
- Local Optimization

Aspen Plus Urea Synthesis Model

SolidSim Urea Granulation Model
AspenTech and SolidSim
Bringing Our Strengths Together

- Physical Properties
- Reactions & Electrolytes
- Fluid Unit Operations
- Integrated Workflows
- Worldwide Support
- University Program
- Solids Process Modeling
- Solids Characterization
- Solids Unit Operations
- Deep Expertise
- Relationship with universities researching solids technology

SolidSim functionality is completely integrated in Aspen Plus V8.2
May 2013 release
Aspen Plus V8 - Optimizing Processes with Solids and Fluids Made Easy

- Sample Templates
- Online Training
- Economics for Solids
- Visualize PSD
- Visualize Separation Curves
- Optimize Entire Process
- Comprehensive Solids Model Library
Aspen Plus provides a comprehensive model library for the unit operations of particle technology.

<table>
<thead>
<tr>
<th></th>
<th>Crystallizer</th>
<th>Crusher</th>
<th>Screen</th>
<th>Dryer</th>
<th>Granulator</th>
</tr>
</thead>
<tbody>
<tr>
<td>SolidSim</td>
<td>![Crystallizer Diagram]</td>
<td>![Crusher Diagram]</td>
<td>![Screen Diagram]</td>
<td>![Dryer Diagram]</td>
<td>![Granulator Diagram]</td>
</tr>
<tr>
<td>Aspen Plus V7</td>
<td>![Crystallizer Diagram]</td>
<td>![Crusher Diagram]</td>
<td>![Screen Diagram]</td>
<td>![Dryer Diagram]</td>
<td>![Granulator Diagram]</td>
</tr>
<tr>
<td>Aspen Plus V8</td>
<td>![Crystallizer Diagram]</td>
<td>![Crusher Diagram]</td>
<td>![Screen Diagram]</td>
<td>![Dryer Diagram]</td>
<td>![Granulator Diagram]</td>
</tr>
</tbody>
</table>

Design Philosophy:
One unit operation model can represent many different types of equipment at various levels of fidelity from conceptual→detailed.
Aspen Plus Solids Modeling - Solids Handling Operations

<table>
<thead>
<tr>
<th></th>
<th>Gas Cyclone</th>
<th>Scrubber</th>
<th>Centrifuge</th>
<th>ESP</th>
<th>Classifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>SolidSim</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen Plus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspen Plus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The updated models use *state-of-the-art* correlations and methods to ensure accurate sizing and design.
Aspen Plus Solids Modeling - Solids Handling Operations

Total of 38 models from SolidSim have been integrated into Aspen Plus
Aspen Plus Solids Modeling - Description of Disperse Solids

- Aspen Plus allows for detailed description of disperse solids
 - Different particle types (sub streams)
 - Each particle type is described by
 - Distributed Properties
 - Composition
 - Particle size
 - Scalar values per particle type (sub stream)
 - Moisture content(s)

Moisture content as impact on heat capacity, density and settling velocity of the particles
Self Guided Examples

- Get up to speed easily by using 12 New Self Guided Examples
 - Consist of example files and detailed step-by-step slides
 - Included in the Support Center (http://support.aspentech.com) and accessible via aspenONE Exchange

Search “Solids”, “Granulation”, “Dryers” etc.

Filter By:
- Process
- Model Features
- Components
- Component Form...
- Reaction Type
- Run Class
- Unit Operation Type
- Physical Properties
- Column Reboiler T...

Sort by date

Examples:
- How do I estimate model parameters in Aspen Plus...
- How do I model the pneumatic conveying...
- How do I model a circulating fluidized bed...
- How do I model a fluidized bed agglomerator in...
- How do I model a batch dryer in Aspen Plus?
- How do I model a multichamber fluidized bed...
- How do I model and optimize a belt dryer...
- How do I set up multiple particle types...
- How do I set up a Particle Size Distribution (PSD)...
- How do I model crushing/milling and classification...
Agenda

- Introduction
- Fluidized Bed
 - Circulating Fluidized Bed Demo
- Pneumatic Conveying
 - Dilute Phase Conveying Demo
 - Dense Phase Conveying Demo
- Questions & Discussion
Why Model a Fluidized Bed?

- **Problem:** Loss of fines, unknown particle size distributions or flow rates, high operating costs

- **Benefits:**
 - Gain a better understanding of particle size distributions and flow rates throughout process
 - Minimize loss of fines due to optimal designed gas-solid separation sections
 - Reduce operating costs due to optimal gas and solids flow rates
Fluidized Bed Model in Aspen Plus V8.2

- Aspen Plus Fluidized Bed Model
 - describes bubbling or circulating fluidized bed
 - fluid mechanics (one-dimensional)
 - entrainment of particles
 - solids and vapor in thermodynamic equilibrium
 - considers
 - particle size and density / terminal velocity
 - geometry of the vessel
 - additional gas supply
 - impact of heat exchangers on bed temperature and fluid mechanics
 - provides different options/correlations to determine
 - minimum fluidization velocity
 - transport disengagement height
 - entrainment of solids from the bed
 - distributor pressure drop (porous plate / bubble caps)
Fluidization in Aspen Plus - Model Short Description

- Model of the fluidized bed considers
 - Bottom zone (dense bed)
 - High solids concentration
 - Fluid mechanics according to Werther and Wein
 - Considers growth and splitting of bubbles
 - Freeboard
 - Comparable low solids concentration
 - Fluid mechanics according to Kunii and Levenspiel

- User defines bed inventory by specifying the pressure drop or the solids hold-up
 - Height of the bottom zone and the freeboard can be determined
 - Bubble related profiles (e.g. bubble diameter, bubble rise velocity etc.) as well as interstitial gas velocity, pressure, and solids volume concentration profiles can be calculated
 - By using selected entrainment correlation, the solids mass flow and PSD at the outlets can be calculated
Agenda

- Introduction
- Fluidized Bed
 - Circulating Fluidized Bed Demo
- Pneumatic Conveying
 - Dilute Phase Conveying Demo
 - Dense Phase Conveying Demo
- Questions & Discussion
Circulating Fluidized Bed Example

- The following example will demonstrate how a fluidized bed process can be simulated and optimized with Aspen Plus
 - Simulation of a fluidized bed with external gas-solid separation and recycle of entrained material
 - Optimization study to decrease energy demand
Circulating Fluidized Bed Example – Review Results

- With the optimized flow rate it is possible to decrease
 - the pressure drop by ~12%
 - the volume flow by ~9%

→ Decrease in energy for the primary blower by ~20%
Fluidized Bed - Summary

- Aspen Plus can be used to model bubbling or circulating fluidized beds with subsequent gas/solid separation.

- Modeling fluidized beds helps to:
 - Gain a better understanding of particle size distributions and flow rates throughout process.
 - Minimize loss of fines due to optimal designed gas-solid separation sections.
 - Reduce operating costs due to optimal gas and solids flow rates.

20% decrease in energy for the primary blower in the example case.
Agenda

- Introduction
- Fluidized Bed
 - Circulating Fluidized Bed Demo
- Pneumatic Conveying
 - Dilute Phase Conveying Demo
 - Dense Phase Conveying Demo
- Questions & Discussion
Why Model Pneumatic Conveying?

- **Problem:** Plugging of the conveying line, attrition or breakage of conveyed material, high operating costs

- **Benefits:**
 - Reduce risk of plugging due to optimized design
 - Minimize attrition and breakage due to minimized gas and solids velocities
 - Reduce operating costs due to minimized pressure drop
Depending on the solids loading there are two major solids conveying types that have to be distinguished:

- **Dilute phase conveying**
 - Solids loading up to 30 kg solid per kg gas
 - Lower pressure drop compared to all other conveying types
 - Highest material velocity and therefore the highest tendency to abrasion
 - Material conveyed in the gas stream

- **Dense phase conveying**
 - Solids loading up to 150 kg solid per kg gas
 - Medium pressure drop
 - Low material velocities
 - Material is conveyed in dunes/slugs
Solids Conveying - Dilute Phase Conveying Model

- Model predicts the pressure drop of a lean phase conveying system
 - Pressure drop of the solids according to Muschelknautz or Siegel
 - Horizontal, vertical and inclining pipelines can be considered
 - Pressure drop due to initial acceleration of solids can be considered
 - Pressure drop due to elbows can be considered (pipe)
 - Plugging limit is calculated
Solids Conveying - Dense Phase Conveying Model

- Model predicts the pressure drop of a low-velocity slug flow conveying system
 - Model is based on the method proposed by Wypych and Yi to predict the pressure drop in horizontal pipelines
 - In vertical sections, a pressure drop to lift the solid mass has to be added
 - Pressure drop due to elbows can be considered (pipe) by use of an equivalent length
 - Slug velocity and total length of slugs is calculated
Modeling Solids Conveying with Aspen Plus V8.2

- Conveying lines can be operated in pressure or vacuum/suction mode:

 Pressure mode

 ![Pressure Mode Diagram]

 Vacuum/suction mode

 ![Vacuum/suction Mode Diagram]

- The Aspen Plus Pipe & Pipeline model allows you to simulate:
 - Dilute phase and dense phase conveying
 - Pressure and vacuum conveying
Agenda

- Introduction
- Fluidized Bed
 - Circulating Fluidized Bed Demo
- Pneumatic Conveying
 - Dilute Phase Conveying Demo
 - Dense Phase Conveying Demo
- Questions & Discussion
Dilute Phase Conveying - Pipe Example / Pressure Conveying

- Modeling and optimization of a dilute phase conveying line
 - Base case:
 - Total pressure drop of the conveying line is ~ 25 mbar
 - Task:
 - Decrease the pressure drop of the conveying line
 - Constraints
 - Ensure that no plugging of the conveying line will occur (approach to saltation velocity > 5 m/s)

live demo
Process Optimization – Review Results

- With the optimized flow rate it is possible to decrease
 - the pressure drop by ~23%
 - the volume flow by ~14%
 \[\text{Decrease in energy for the blower by over } \sim 34\% \]

Base Case

<table>
<thead>
<tr>
<th>Name</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pipe diameter</td>
<td>meter</td>
<td>0.15</td>
</tr>
<tr>
<td>gas mass flow</td>
<td>kg/hr</td>
<td>1300</td>
</tr>
<tr>
<td>solids mass flow</td>
<td>kg/hr</td>
<td>2000</td>
</tr>
<tr>
<td>dp segment 1</td>
<td>mbar</td>
<td>13.8714</td>
</tr>
<tr>
<td>dp segment 2</td>
<td>mbar</td>
<td>3.70424</td>
</tr>
<tr>
<td>dp segment 3</td>
<td>mbar</td>
<td>4.6494</td>
</tr>
<tr>
<td>dp segment 4</td>
<td>mbar</td>
<td>2.88997</td>
</tr>
<tr>
<td>dp total [mbar]</td>
<td></td>
<td>25.1151</td>
</tr>
<tr>
<td>approach to sal. vel.</td>
<td>m/sec</td>
<td>7.66823</td>
</tr>
</tbody>
</table>

Optimized Case

<table>
<thead>
<tr>
<th>Name</th>
<th>Units</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pipe diameter</td>
<td>meter</td>
<td>0.15</td>
</tr>
<tr>
<td>gas mass flow</td>
<td>kg/hr</td>
<td>1120</td>
</tr>
<tr>
<td>solids mass flow</td>
<td>kg/hr</td>
<td>2000</td>
</tr>
<tr>
<td>dp segment 1</td>
<td>mbar</td>
<td>11.6582</td>
</tr>
<tr>
<td>dp segment 2</td>
<td>mbar</td>
<td>3.54895</td>
</tr>
<tr>
<td>dp segment 3</td>
<td>mbar</td>
<td>3.86329</td>
</tr>
<tr>
<td>dp segment 4</td>
<td>mbar</td>
<td>0.188321</td>
</tr>
<tr>
<td>dp total [mbar]</td>
<td></td>
<td>19.2587</td>
</tr>
<tr>
<td>approach to sal. vel.</td>
<td>m/sec</td>
<td>5.023</td>
</tr>
</tbody>
</table>
Agenda

- Introduction
- Fluidized Bed
 - Circulating Fluidized Bed Demo
- Pneumatic Conveying
 - Dilute Phase Conveying Demo
 - Dense Phase Conveying Demo
- Questions & Discussion
The following example will demonstrate how a vacuum operated dense phase conveying line can be simulated by using the pipeline model

- Use of characteristic curve of blower to determine gas volume flow
Pneumatic Conveying - Summary

- Aspen Plus can be used to model dense and dilute phase conveying in pressure and vacuum mode.
- Modeling pneumatic conveying helps to:
 - Reduce risk of plugging due to optimized design.
 - Minimize attrition and breakage due to minimized gas and solids velocities.
 - Reduce operating costs due to minimized pressure drop.

34% decrease in energy for the primary blower in the example case.
Agenda

- Introduction
- Fluidized Bed
 - Circulating Fluidized Bed Demo
- Pneumatic Conveying
 - Dilute Phase Conveying Demo
 - Dense Phase Conveying Demo
- Questions & Discussion
What Next?

- **Get more information now**
 - Call your AspenTech account manager *or*
 - Call Aspen Telesales Direct:
 - USA: **+1-855-882-7736**
 - EUROPE & MIDDLE EAST: **+44-1189-226400**
 - ASIA/PACIFIC and INDIA: +65-6395-3900
 - Or email us at esales@aspentech.com

- **Contact info for today’s presenter and hosts**
 - Claus Reimers claus.reimers@aspentech.com
 - Ron Beck ron.beck@aspentech.com
 - Jen Dyment jennifer.dyment@aspentech.com
Get Started with Solids Modeling in Aspen Plus

Learning Resources are Available

- Computer Based Training: Getting Started with Solid Modeling in Aspen Plus V8
- Videos also available at: www.youtube.com/user/aspentechnologyinc
- Demos available in aspenONE Exchange and the Support Center (support.aspentech.com)
Want More Help?

Consider a training class from AspenTech

http://training.aspentech.com
Aspen Plus: Solids Modeling Training

Solids Modeling Using Aspen Plus (EAP2911)

September 27, 2013 – Virtual-Americas
October 15, 2013 – Frankfurt, Germany
October 25, 2013 – Houston, TX
October 30, 2013, 2013 – Reading, UK

http://support.aspentech.com/supportpublictrain/CourseInfo.asp?course=EAP2911

• Become proficient in modeling processes containing solids handling equipment
• Determine optimal process conditions for new or existing solids processes
• Support troubleshooting and de-bottlenecking of solids processes
• Gain the practical skills and knowledge to begin modeling new and existing solids processes
Questions