Sustain High Performance with Adaptive Process Control

May 20, 2013
Anand Shah, Principal Business Consultant
Altaf Khan, Principal Business Consultant
Challenges

Complete New Control projects
Improve efficiency of practitioners and solutions

Maintain Benefits
Solution maintenance
Large re-vamp pipeline

Develop APC Resources
Increase number of skilled practitioners
Build effective internal APC groups

Benefits
Develop APC Resources
Improve efficiency of practitioners and solutions
Complete New Control projects

© 2013 Aspen Technology, Inc. All rights reserved
Empowering Users
Self-sufficiency Across the APC Lifecycle

- Simplify usability
- Develop an improved methodology
- Embed workflows and automated tools
- Maintain the infrastructure

Broader set of training delivery methods
APC Projects

Waterfall Methodology

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment</td>
<td>Justification & baselines</td>
</tr>
<tr>
<td>Pretest</td>
<td>Tags, instrumentation, test design</td>
</tr>
<tr>
<td>Test</td>
<td>Data collection, DCS interface, step testing</td>
</tr>
<tr>
<td>Modeling</td>
<td>Data slicing, transforms, identification</td>
</tr>
<tr>
<td>Configuration</td>
<td>Initial tuning, calculations</td>
</tr>
<tr>
<td>Simulation</td>
<td>Verify ranking, check robustness, adjust tuning</td>
</tr>
<tr>
<td>Commissioning</td>
<td>Open & closed loop testing, gain adjustments</td>
</tr>
<tr>
<td>Monitoring</td>
<td>Plant/model mismatch, PID tuning, SS & Dynamics</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>Correct mismatch, correct loop problems</td>
</tr>
</tbody>
</table>
Focusing Automation on Key Tasks

Test Model Commission

Automated Testing Calibrate Mode Adaptive Modeling
Automated Slicing
Innovations

Adaptive Process Control

| Model Quality Analysis | Robust Control w/ Economic Relaxation | Closed-loop Capable Model ID | Automatic Data Slicing | Adaptive Modeling |

Automatic generation of candidate models. Assessment tools for rapid evaluation of fidelity.
Adaptive Process Control

Optimizing Control During Testing

Precision Re-vamps

Process vs. Projects
Situation: Controller Off During Testing

- First-generation maintenance tools delivered benefits, but didn’t solve the biggest cost issues
 - Shorter cycles, but more disruptive
 - Lost capacity
 - Reduced quality
 - Testing required constant management

- Controller turned off to collect open loop data
Revamping a controller often required up to 80% of the original effort (and cost!)
- Latent (and not-so-latent) costs of plant step testing
- Lack of precision in identifying problem areas of the models
- Co-linearity detection and repair were not integrated with the other modeling workflows
- Preparing data for Model Identification was manually intensive
- Generating candidate models required a lot of activity by the control engineer
Situation: Infrequent Maintenance Projects

- APC Maintenance methodology mirrored the initial project. That produced undesirable side effects
 - Maintenance is commonly deferred until unit turnarounds and in the interim, controller performance becomes untenable
 - Degrading performance oftentimes results in operators turning off the controller
Required Technology to Realize Benefits of Adaptive Process Control

- MQA: Model Quality Assurance to determine which models are bad – Which MVs to retest
- LP relaxation to drive process to a consensus constraint set agreed by Production
- Calibrate Mode: Use of Calibration Ratio to dial in sufficient robustness to prevent cycles
- Multistep Mode from Aspen SmartStep to move MVs in ratio to rapidly converge gain ratios and RGAs of the model
- Aspen Watch: Collect the test data
- PID Watch: Monitor PID loops for saturation and windup to enable auto-slicing
- Adaptive Modeling: New Closed Loop Capable version of Subspace ID
Calibrate Mode

- Calibrate mode moves CVs close to their LP targets via DMCplus, then run Multi-test within tolerance allowed by calibration ratio.

- Adaptive Modeling collect test data, excluding bad data through automated slicing and periodically identify the model by subspace ID.
Economic Relaxation

- Use Economic Relaxation to nominate an profitable LP solution within range $\Delta J < economic \ relaxation$ in DMCplus

- If we have significant model mismatch between model and process, should we change LP target every minute?

- No, we use ‘Economic Relaxation’ to keep target constant until new target is outside blue triangle, then pick a new LP target

A is calculated LP solution based on model and B comes based on process. There is gap between A and B by model mismatch.

We don’t like to change A within range - delta J, because we cannot guarantee the optimal value, because of model uncertainty.

Dot : Process, line : Model
How do we decide CVs and MVs?

How do we decide CV & MV?
1. MV’s COST RANK
2. MV’s COST FACTOR
For example
① COST RANK : MV1 > MV2
② COST : Max(Min) of MV1
③ ‘B’ is optimum
Calibration Ratio

- If $\Delta J = J_{\text{optimal}} - J_{\text{current}} > \text{calibration ratio}$, closed loop with DMCplus control mode to track the CV target in calibration mode.

- If $\Delta J = J_{\text{optimal}} - J_{\text{current}} < \text{calibration ratio}$, open loop and multistep MV movement in calibration mode.
① We have economic relaxation and ΔJ under limit conditions.
: No steady state target movement and multistep mode.

② We have economic relaxation higher than limit conditions and ΔJ under limit conditions.
: New steady state target and multistep mode when we change target.

③ We have economic relaxation higher than limit conditions and ΔJ under limit conditions.
: New steady state target and DMC+ mode, when we change target.
How does Calibration Ratio govern behavior in Calibration Mode?

- We can see how calibrate mode run per each ΔJ condition.

![Graph showing the behavior of calibrate mode](image_url)
Effect of Calibration Ratio (CR) on MV step size

- **CR =1**: Big CV + MV movement, so we need shorter plant test time compared with small CR.

- **CR < 0.1**: Small CV + MV movement, lower S/N Ratio
 - If a big disturbance occurs and the MVs respond to counteract it (i.e., feedback correlation), we may fail to get a good model.
 - When we have large model/gain uncertainty, a small CR is the recommendable approach.

CR : Calibration Ratio
How is Calibrate Mode Different from SmartStep Multi-Test Mode?

- Higher Financial Return from Calibrate Mode:
 - Less disruptive and less supervision to operate – fewer alarms, less product give-away, low feed losses
 - Capture best practices in testing and model development – Anyone can get a qualified model.
 - Sustained performance tool – easily maintain model fidelity for high on-stream factor and performance.
Demo
Shaping the Timeline

- Test
- Model
- Commission

Months

Test
- Model
- Commission

Weeks

Adaptive Modeling

Calibrate Model

Maintenance Costs

New DMCplus Projects

Adaptive Process Control

Costs
Benefits

- Recent innovations in aspenONE APC deliver **game-changing improvements** to both controller sustainability and initial application development
- Enables optimizing control while doing small perturbation step testing
- Allows the engineer to set the degree of aggressiveness of the test
Want to see similar results?

Consider a training class from AspenTech

http://training.aspentech.com
Advance Process Control
Performance Monitoring (APC2600)

May 28, 2013 – Reading, UK
June 24, 2013 – Houston, TX
July 22, 2013 – Houston, TX
July 29, 2013 – Reading, UK
September 2, 2013 – Singapore

http://support.aspentech.com/supportpublictrain/CourseInfo.asp?course=APC2600

• Learn how to use Aspen Watch KPI to analyze and troubleshoot controller performance, and how to detect and repair model mismatch in Aspen DMCplus controllers.
 • Learn to sustain the benefits achieved by your control applications.
 • Learn how Aspen Adaptive Control can help improve performance of the controller through generating and deploying updated models.
Training Options: Webinars.. Continuous learning

- May 20, 2013: Sustain High Performance with Adaptive Process Control
- March 6 2013: First Look at aspenONE APC V8
- April 8, 2013: Managing APC Software with Virtual Machines

Recent webinars on many topics can be viewed on-demand on aspentech.com
For More Information

- Altaf Khan - Principal Business Consultant
 altaf.khan@aspentech.com

- Anand Shah - Principal Business Consultant
 anand.shah@aspentech.com