EHM105 - Unlock Operational Excellence with AI-Powered Digital Twins

Course Agenda

Aspen HYSYS Process Simulation Overview

- Identify the benefits of process simulation
- Describe the capabilities of Aspen HYSYS
- Introduce the Aspen HYSYS graphical user interface and organizational structure

Getting Started

- Enter necessary elements to fully define a Fluid Package
- Specify required parameters in order to execute flash calculations and fully define material streams
- · Modify and set desired units of measure
- Review stream analysis options and Emissions Manager to perform emissions calculations
- Workshop: Introduce basic concepts necessary for creating simulations in Aspen HYSYS

Propane Refrigeration Loop

- Add and connect unit operations to build a flowsheet
- Use available tools to manipulate the user interface
- View and customize the Aspen HYSYS Workbook
- Convert a simulation case to a template
- Workshop: Build and analyze a propane refrigeration loop

Reporting in Aspen HYSYS

- Survey common result reporting techniques in Aspen HYSYS
- Generate Excel reports from the HYSYS Workbook
- Use the Report Manager to create custom unit operation and stream reports
- Identify steps to perform CO2 emissions tracking, Carbon Fee, Utility Consumption and Cost calculations Sustainability Focus
- Discover how to report non-standard physical properties in your material streams
- Introduce Data Tables as an option to create customized simulation results tables
- Provide a brief introduction to Aspen Simulation Workbook, enabling integration between Microsoft Excel and Aspen HYSYS

Oil Characterization and HP Separation

- Introduce the Aspen HYSYS Oil Manager and Assay Management features and how they are used for assay characterization
- Perform Spreadsheet calculations in Aspen HYSYS
- Use the Case Study feature to run flowsheet-wide scenarios
- Workshop: Use the Assay Management tools to characterize a crude assay, then employ the Spreadsheet and Case Study features to determine how Gas-Oil Ratio (GOR) varies with operating pressure

Heat Exchanger Rating

- Review the available heat transfer unit operations in Aspen HYSYS
- Compare and contrast the applicability and operation of different heat exchanger models
- Learn how to assign process utilities to energy streams to see usage at stream level
- Implement Aspen Exchanger Design & Rating (EDR) for rigorous heat exchanger calculations within Aspen HYSYS
- Introduce the Activated Exchanger Analysis feature for continuous heat exchanger study and design
- Workshop: design and rate a heat exchanger using the EDR interface inside Aspen HYSYS

Gas Gathering and Crude Pre-Heat Train

- Use the Pipe Segment operation to model single and multi-phase fluid flow
- Introduce Pipe Segment Flow Assurance capabilities to ensure short and long-term viability of pipelines
- Introduce mathematical operations, starting with the Balance and Adjust
- Introduce the Recycle operation in Aspen HYSYS
- Workshop Gas Gathering (O&G Focus): Use the Pipe Segment and its built-in Flow Assurance tools to model and study a piping network in Aspen HYSYS

-Or-

• Workshop Crude Pre-Heat Train (Refinery Focus): Using a variety of heat transfer, separations, and piping unit operations, construct a raw crude pre-heat train flowsheet

NGL Fractionation and Atmospheric Crude Column

- Introduce Aspen HYSYS column models and templates
- Use the Input Expert to add and define a distillation column
- Add and manipulate column specifications to meet process objectives
- Include column side operations for additional distillation configuration options
- Workshop NGL Fractionation (O&G Focus): Model a two column natural gas liquids (NGL) fractionation train

-Or-

• Workshop Atmospheric Crude Column (Refinery Focus): Construct, run, manipulate, and analyze an atmospheric crude distillation column

Introduction to Aspen Hybrid Models

- Understand what Aspen Hybrid Models are
- Review different types of modeling approaches and their advantages and disadvantages
- Recognize the importance of using hybrid modeling and how it can help solve complex problems

Creating Aspen Hybrid Models

- Review overall approach to building Aspen Hybrid Models
- Identify tools needed to create Aspen Hybrid Models
- Discuss how to login to Aspen Al Model Builder
- Understand how to deploy Aspen Hybrid Models in Aspen Plus/Aspen HYSYS

Workflow for Creating an Al Model Builder Project

- Understand the workflow of Al Model Builder
- Create a new project
- Workshop: Create a project in AIMB to generate a Hybrid Model

Data Importing and Configuration

- Learn the way to import the data
- Set up the data for hybrid model development
- Workshop: Import and configure the data to generate a hybrid model

Workflow for Data Cleaning

- Get familiar with the type of data sets
- Identify the cleaning methods

Build the Project

- Recognize the key steps in building the hybrid model
- Workshop: Build the hybrid model using AI Model Builder

Analyze and Deploy

- Analyze results for the model built
- Use deployment tool to add a hybrid model in a simulator program
- Workshop: Analyze and deploy the hybrid model

Introduction to Aspen Multi-Case

- Review what is Aspen Multi-Case
- Discuss the advantages of using Aspen Multi-Case
- Demonstrate steps involved in using Aspen Multi-Case
- Workshop: Generate simulation data using Aspen Multi-Case
- Workshop: Deploy a hybrid model using simulation data

Overview Of Plant Data Feature

- · Overview of "digital twin" concept
- Review the workflow of Plant Data in simulator
- Workshop: Import Raw Plant Data from Excel
- Workshop: Condition the Collected Plant Data
- Workshop: Link Model Input Variables to Plant Data Sources
- Workshop: Run the Model Using the Conditioned Data
- Workshop: Link Model Results to Output Tags
- Workshop: Publish to Aspen OnLine (AOL)

Solution architecture and Success stories of Digital Twin (Al and Online) Identify and discuss use cases and deployment strategies

Optional Exercises and Extra Materials (Time Permitting) Best Practices & Troubleshooting Hysys flowsheet

- Discover Activated Analysis for continuous evaluation of economics, energy usage, equipment design, and dynamic modeling
- Recognize how "Pinch technology" is used to minimize energy use and optimize heat exchangers - Sustainability Focus
- Identify best practices for using Aspen HYSYS
- Investigate reasons why a simulation may produce poor results or errors
- Use suggested tips to debug a variety of simulations
- **Workshop**: Troubleshoot a series of Aspen HYSYS simulations and implement various best practices to get these simulations to solve properly

Acid Gas Package in Hysys

- Introduce the Acid Gas Property Package
- Carbon capture and storage example of carbon capture using DEPG (physical solvents) and MEA (chemical solvents) - Sustainability Focus
- Dynamic modeling capabilities for Acid Gas Columns in v12 Sustainability focus
- Workshop: Model an acid gas sweetening process using diethanolamine

Liquefied Natural Gas (LNG) Plant build in Hysys

- Use the LNG Exchanger operation to simulate multi-pass heat exchangers
- Utilize the Sub-Flowsheet to build a modularized process flowsheet
- Workshop: Model an LNG production process