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Summary 
 
Field development planning using reservoir models is a key step in the field development process. Numerical 

optimisation of specific field development strategies is often used to aid planning. Bayesian Optimisation is a 

popular optimisation method that has previously been applied to this problem. However, reservoir models can 

have a high degree of geological uncertainty associated with them, even after history matching. It is important to 

be able to perform optimisation that accounts for this uncertainty. To date, limited attention has been given to 

Bayesian Optimisation of field development strategies under geological uncertainty.  

 

Much of the recent work in this area has focused on Ensemble Optimisation methods. These naturally handle 
geological uncertainty using ensembles of geological realisations. This can result in a high computational cost, as 

large ensembles are required to capture the geological uncertainty. Bayesian Optimisation offers an alternative 

solution using probabilistic surrogate or proxy models that can capture the geological uncertainty. However, 

incorporating geological uncertainty into proxy models and using those models in a Bayesian Optimisation loop 

remains a challenging task. Further, the effect of the additional proxy model uncertainty on optimisation results 

has not been well studied.  

 

We propose a Bayesian Optimisation workflow comprising a Stochastic Bayes Linear proxy model and a 

combination of experimental and sequential design techniques. The workflow is designed to include a 

combination of static and dynamic uncertainties, with a new geological realisation generated and used to simulate 

fluid flow during each run of the model. The workflow is demonstrated by optimising several field development 

strategies in a synthetic North Sea reservoir model. The ability of the workflow to locate optima and correctly 
account for the geological uncertainty is studied and the computational cost is quantified.  

 

The performance and practical implications of the proposed approach are discussed. These are important in 

designing an accurate and computationally efficient optimisation workflow under geological uncertainty and, 

ultimately, are factors in developing decision support tools for field development. 
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Introduction 

Numerical optimisation of specific field development strategies is often applied to reservoir simulation 

models and used to aid the field development planning process. The goal is to find values for a set of 

control parameters that maximise an objective function. Typically, the objective function quantifies the 

revenue from the field, balanced against the operating costs and both geological and economic 

constraints. It can vary from as simple as the total oil recovered through to a comprehensive estimate 

of the net present value (NPV) of the field. The control parameters are defined by the field development 

strategy. For example, an engineer may wish to find the best control strategy for the drilled wells in the 

field. In this case, controls could include targets for production and injection rates. Other scenarios may 

involve drilling new wells, in which case the controls would include the location, trajectory and drill 

time for the new wells. 

Many numerical optimisation schemes have been applied to these problems in the absence of geological 

uncertainty. Well control problems have been approached using both gradient and adjoint based 

techniques (Jansen, 2011) and derivative free techniques (Ciaurri, et al., 2011). Discontinuities in the 

response due to geological features such as faults have led to derivative free approaches being taken for 

well placement optimisation. For example, (Emerick, et al., 2009) optimised the placement of wells 

using a genetic algorithm with non-linear constraints. Genetic algorithms have also been applied to the 

problem in conjunction with statistical proxies (Artus, et al., 2006). More recently, (Alrashdi & 

Sayyafzadeh, 2019) compared an (� + �) evolution strategy algorithm with a genetic algorithm, a

particle swarm optimiser and an covariance matrix adaptation evolution strategy for both well 

placement & trajectory optimisation and well control optimisation.  

The lack of direct subsurface observations means that reservoir models often have a high degree of 

geological uncertainty. From a probabilistic perspective, this means that the reservoir model will be 

parameterised over a set of inputs, representing geological uncertainties, that are characterised by a 

probability distribution. In the case of appraisal studies, where no production data is available for the 

field, there will be a high level of geological uncertainty and uncertainty parameters will be specified 

by expert defined analytic prior distributions. In the case of previously developed, or brownfield, 

reservoirs the geological uncertainty will have been reduced by history matching the model to 

production data and other measurements. In this case, the probability distribution of the uncertainty 

parameters, termed the posterior distribution, will be a numerical approximation and is usually specified 

by a set of samples derived from the history matching process. The addition of further data and 

calibration of the model can reduce geological uncertainty, but the uncertainty can never be eliminated. 

Thus, it is important to account for this uncertainty when performing optimisation of a reservoir 

development scenario – a process known as optimisation under uncertainty. 

Differing numbers of samples may be available when the distribution of the uncertainty parameters is 

defined as the result of a history matching process. Ideally, there will be a large number of samples and 

the posterior probability distribution will be well characterised. This is typically the case for history 

matching approaches that use statistical emulators and Markov chain Monte Carlo (MCMC) or similar 

approaches to obtain samples of the posterior distribution (Fillacier, et al., 2014). However, some 

history matching approaches, notably those designed for high dimensional history matching problems 

such as the Ensemble Kalman filter (Evensen, 2003) or Ensemble Smoother (Emerick & Reynolds, 

2013), limit the number of samples of the posterior distribution to a fixed size ensemble of geological 

realisations. As we will see, some optimisation under uncertainty approaches are specifically designed 

to work with a set of fixed realisations such as these. The optimisation under uncertainty method 

described here can work with such a fixed set of realisations. One of its main benefits, however, is the 

ability to refine its representation of the geological uncertainty by incorporating further samples, 

resulting in extra geological realisations. As such, it is most naturally applied in the appraisal case or in 

the brownfield case in conjunction with a similar, emulation based, history matching process. 

Methods for performing optimisation under uncertainty have been an active research topic in recent 

years. In part, this has been driven by benchmark challenges such as the Brugge (Peters, et al., 2010) 
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and OLYMPUS (Fonseca, et al., 2018) challenges. The Brugge challenge featured both history 

matching and follow on optimisation components. This provided more variety in the uncertainty data 

that was used with the optimisation scheme and consequently more variety in the optimisation under 

uncertainty approaches used. The OLYMPUS challenge focused solely on optimisation and provided a 

set of 50 geological realisations to describe the uncertain geology. 

Ensemble optimisation methods, which are a combination of gradient based optimisation with 

geological uncertainties described by a fixed set of realisations, have been very successful for problems 

of this type. The first ensemble optimisation method was described by (Lorentzen, et al., 2006), who 

adapted the ensemble Kalman filter to optimise water flooding in a reservoir model. (Chen, et al., 2009) 

used ensemble optimisation in a closed loop scheme to optimise well controls. More recently, (Fonseca, 

et al., 2017) introduced a refined version of ensemble optimisation and benchmarked their scheme 

against several others. Ensemble optimisation schemes were well represented in the entries to the 

OLYMPUS optimisation challenge. 

Bayesian optimisation (Shahriari, et al., 2016) and statistical emulators, or proxy models, have 

previously been applied to optimisation under uncertainty of reservoir models. (Schulte, et al., 2020) 

built separate emulators for a fixed set of geological realisations and used them to help optimise well 

placement in a geothermal reservoir. (Goodwin, 2018) applied emulators to the OLYMPUS challenge. 

Separate emulators were constructed for each quantity of interest rather than for each geological 

realisation. Geological realisations were included as a categorical variable in the emulator and a 

mapping between this variable and the objective was used to account for the geological uncertainty. 

This allowed the emulators to be updated using single simulation runs, each with different geological 

models and control parameter values.  

In this paper, we develop a Bayesian Optimisation workflow for reservoir model optimisation under 

uncertainty based on a stochastic Bayes Linear emulator. Similar methods have been used with 

stochastic models in other domains (Andrianakis, et al., 2015), (Ankenman, et al., 2010). However, they 

have not been used for reservoir model optimisation under uncertainty. The workflow differs from 

existing emulator-based approaches to optimisation of reservoir models in that separate emulators are 

not constructed for a fixed ensemble of geological models. Nor is an auxiliary categorical variable used 

to account for different realisations. Instead, a single emulator is constructed for each quantity of interest 

and the emulator accounts for the geological uncertainty in a statistically consistent way. A relatively 

small number of repeated reservoir model runs, with differing geological parameter values, are executed 

for each tested control parameter set. The set of geological parameter values that can be used is not 

fixed a priori. Instead, new geological parameter values are sampled each time from the probability 

distribution that defines the geological uncertainty. The number of repetitions can be dynamically 

increased for control parameter sets that are of interest. This allows further understanding of the effect 

of the geological uncertainty and refinement of the emulator in this location. The emulator is used in an 

adapted Bayesian optimisation framework, where experimental design techniques are used to create an 

initial set of runs to build the emulator and sequential design techniques are used to optimise the control 

parameter values and refine the emulator in regions of interest. This allows for a flexible optimisation 

scheme that can use a low number of simulations runs while respecting geological uncertainty. 

Theory and Methods 

Overview 

The workflow supports optimisation of control parameters in simulation models under both static and 

dynamic geological uncertainties. A common platform integrator allows multiple software components 

to be joined together to form a composite reservoir model. Most commonly, and in the third example 

described here, a geological modelling package is combined with reservoir fluid flow simulation 

package to create a model with both static and dynamic uncertainties (Aarnes, et al., 2015). The 

integrator allows other software packages to be incorporated to create the model to be optimised. For 
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example, (Aslam & Bordas, 2020) integrated a discrete fracture modelling package with a fluid flow 

simulator to study history matching in shale reservoirs. 

The mathematical framework uses a statistical emulator for the composite simulation model to 

accelerate optimisation. The emulator acts as a probabilistic surrogate or proxy for the model, which 

allows fast model approximation and a measure of the uncertainty associated with the approximation. 

The emulator is built using results from model runs with inputs carefully chosen using a combination 

of experimental and sequential design techniques. Repeated runs with common control parameters and 

varying geological parameters are used to assess the impact of the geological uncertainties and inform 

the emulator. 

A Mathematical Framework for Reservoir Models with Geological Uncertainty 

Consider a deterministic reservoir simulation model, ���, 	), where � is vector of control input values,

such as production rate targets, well pressures and well locations, and 	 a vector of geological input

values, such as permeabilities and porosities. In models that use stochastic geological modelling 

algorithms, 	 may also contain random seed values. � itself is a vector of production values of interest,

such as production rates and totals, with individual entries in the vector denoted ��.  As the model is

deterministic, running it twice using the same input parameter settings for both � and 	 results in the

same vector of outputs, ���, 	).

However, in a reservoir model with geological uncertainty the vector 	 of geological input values is not

fixed. Instead the geological uncertainty is defined as a probability distribution, 
��). This distribution

may be defined by expert knowledge, as in the case of an appraisal study, or be approximated as the 

result of some history matching process. The geological input values to the reservoir model can be 

considered as a random variable with this distribution, � ∼ 
��). Individual realisations of this random

variable, 	, can then be used to run the reservoir simulation model in conjunction with a chosen set of

control inputs.  

Under geological uncertainty, the reservoir model is a function of the random variable �. For fixed

control inputs, x, its outputs are also a random variable with an unknown distribution, such that 

���) = ���, 	 = �),
� ∼ 
��).

Repeated evaluations of ���) with the same control input parameter settings give different results, as

the value of the geological input parameters changes each time. In the case of a composite model 

containing a geological modelling package this will also result in a different geological realisations 

being created each time. 

Objective Function 

A flexible system of user defined quantities of interest, termed optimisation points, is used to construct 

an objective function. Optimisation points can be placed on any scalar output from the model. In the 

case of time series outputs, this means that the optimisation point is defined at a specific time. Multiple 

optimisation points can be defined at different times on each time series if required. In the framework 

above, each optimisation point corresponds to an entry �� in the vector of outputs of interest, �. As � is

a random variable, there are many choices over which specific feature of its distribution we may wish 

to optimize. In this initial work, we choose to optimise the mean, or expected value, of each output, 

denoted � �����)�. The framework can be extended to optimise other choices through emulation of the

variance surface (Andrianakis, et al., 2016). 
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Each optimisation point is assigned a weighting, ��, by the user. Weightings allow the relative

dimensionless contribution of each optimisation point to be set and may be negative to allow desired 

quantities to be minimised. The final composite objective function is given by the sum of the expected 

value of the model at the optimisation points multiplied by their weightings. Thus, the objective function � is defined as ���) = � ��������))� . 
Emulator Construction 

For simplicity, assume ���) has just a single scalar output, and so an emulator is constructed for���) = �����)). The method shown can be extended to the vector output case by constructing a

separate emulator for each output. The variance surface is not separately emulated, as it is not required 

when optimising on the expectation of �.

The task of constructing an emulator for ���) is made more difficult as we cannot directly evaluate���) for a given �. Instead ���) is approximated using the sample means from a finite number of

repeated runs with common control parameters. To achieve this, � repeated evaluations of ���) are

performed with fixed control parameters, �. The number of repeats is not fixed and can be scaled

dynamically as required. For � repeats, the sample mean is calculated as an estimate for the true mean,

�� = 1� � ���).�
���

The emulation approach is based on Bayes linear methodology (Goldstein & Wooff, 2007), which is 

equivalent to Gaussian Process regression with partially specified probability distributions (Goldstein, 

2012). The emulator takes the form  

���) = � ������) +  ��) + !���),�
where �� are unknown constants, ����) are known deterministic functions of the inputs,  ��)  is a

weakly stationary stochastic process with zero mean and a chosen correlation function that represents 

the spatial error in the emulator and !���) is a stochastic process that describes the difference between

the sample mean estimate and the true expectation of ���).

The first terms in the emulator are chosen to be a second-order multivariable polynomial with additional 

third-order terms. These terms are used to capture the global trends in the response and any low order 

non-linearities. Not all terms are used by the emulator. The terms used are selected by a stepwise 

regression process. In stepwise regression, the terms (starting with the lowest order terms) are added 

one at a time and the polynomial fitted to existing run data. The Bayesian Information Criterion (BIC) 

(Schwarz, 1978) is calculated at each step. If the new term does not improve the BIC over the previous 

model it is discarded, otherwise, it is kept and stepwise regression proceeds to the next term. Further 

restrictions on the number of terms that can be selected are imposed using a heuristic based on the total 

number of available runs. The stepwise process and these extra restrictions act both to prevent 

overfitting and as a form of automatic relevance determination. Control parameters that are present in 

the stepwise regression terms are classified as active and those that are not classified as inactive, this 

affects how they are treated in the local variation error term. When all terms have been selected, the 

final polynomial is regressed to the data and the � coefficients are calculated together with their

variance.  

The  ��) term expresses the local variation and is calculated after the linear regression terms. It is

modeled as a weakly second-order stationary stochastic process with covariance structure of the form 
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Cov% ��),  ��&)' =  () exp�−./01|�/01 − �/01& |)  − .34/01|�34/01 − �34/01& |)),
Where �, �′ are two vectors of input uncertainty parameters, �/01 and �34/01 are projections of these

vectors on to the space of active and inactive parameters and () is the variance of the residuals after

linear regression. The parameters ./01 and .34/01 are hyperparameters fitted to obtain the maximum

likelihood that the emulator matches the run data. Thus, the emulator has separate characteristic length 

scales for the active and inactive control parameters. 

The !���) term is a stochastic process, uncorrelated with �� and  ��), that describes the difference

between the sample mean estimate and the true mean. It is this term that allows the emulator to account 

for geological uncertainty and its effect on the quantity of interest. The expectation of !���) is zero due

to the sample mean being an unbiased estimator for ���) and, due to the independence of the

realisations from the stochastic simulator, its variance and covariance are given by  

�6!���)7 = 0,
Var6!���)7 = (<)��)� , 

Cov%!���), !���&)' = =(<)��)� , � = �′0, � ≠ �′  
where (<)��) = Var[F(x)] is the variance of the uncertain model output. As we do not know the true

variance of the model output, we use the sample variance, ?�)��), of � repeated runs as an unbiased

estimator, such that 

Var6!���)7 ≈ ?�)��)� . 
The !���) term allows an independent estimate of the error due to geological uncertainty in the

emulator’s estimate of the expected value at each design point. By increasing the number of runs, �, this

error can be reduced as needed in areas of interest. 

Run Design & Updating the Emulator 

Once constructed, the emulator allows quick approximation of the expected value of reservoir outputs. 

An initial set of model runs, referred to as Scoping Runs, are required to act as a training data set to fit 

the emulator. The parameter values for Scoping Runs are carefully chosen using experimental design 

techniques. Subsequent batches of runs, referred to as Refinement Runs, are used to find optimal control 

parameter values and update the emulator. The parameter values for Refinement Runs are chosen using 

sequential design techniques. 

The values of the control inputs used for the initial Scoping Runs are carefully chosen to explore the 

space of control parameters while respecting the probability distributions associated with the geological 

parameters. The control parameter input values are generated using a Latin Hypercube Sampling (LHS) 

design (Stein, 1987). Many LHS designs are generated and the best is selected via a maximin criteria. 

This gives good coverage of control parameter space and reduces spurious associations between the 

parameters. At each control parameter input location, �3, A = 1, … , C, we perform �3 repetitions of the

model, where each �3 may be different for different A, with differing geological parameter inputs. For

each repetition run, numbered D = 1, … , �3, independent samples 	� are drawn from the distribution
��) and the reservoir model is run. This gives model outputs

��%�3' =  �%�3 , 	�',   A = 1, … , C,    D = 1, … , �3.
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The sample means and variances of the responses are calculated for each set of control inputs, �3, as

described in the preceding section, to obtain a vector of sample means, E, and sample variances. These

are combined with variances and covariances due to the spatial terms in the emulator. We may then use 

the standard Bayes linear update formula to obtain the adjusted expectation, EG����)) and varianceVarG����)) for the expected value of the reservoir model ���) at an input point �:

EG%���)' = E%���)' + Cov����), E)Var�E)H�%E − I�E)',VarG%���)' = Var%���)' − Cov����), E)Var�E)H�Cov%E, ���)'.
The adjusted values are analogous to the posterior predictive distribution when using full Gaussian 

regression. The adjusted expectation is the emulator’s prediction of the expected value of the reservoir 

model given a set of control parameters. The adjusted variance gives the uncertainty of that prediction 

accounting for both the spatial uncertainty due to interpolating between existing runs and due to the 

geological uncertainty. 

Optimisation Using the Emulator 

The goal is to find the values of the control parameters that maximise the objective function described 

earlier, that is 

�J/K = argmaxK ���),
and hence find the corresponding objective maximum �J/K = ���J/K). The emulator constructed in

the previous sections is used to accelerate this process by finding the optimal value of an acquisition 

function given the current emulator. This allows us to guide the placement of subsequent Refinement 

Runs. Once Refinement Runs have been executed the emulator is updated to incorporate the new run 

data and can be used to generate further Refinement Runs if required.  

Many choices of acquisition function are available, with each acquisition function offering different 

characteristics and trade-offs between exploitation and exploration. Exploitation refers to selecting 

parameters where the emulator predicts a high objective and exploration means selecting parameters 

where the prediction uncertainty is high. The Expected Improvement (EI) acquisition function offers a 

balanced trade-off between exploitation and exploration (Shahriari, et al., 2016). A version of EI 

adapted for stochastic functions is used here. 

Assume repetitions of the model have already been evaluated at an initial set of control parameter points. 

The current best sample mean output is denoted,  �NO = �N���O), where �O is the current best set of

input parameters. The linear improvement function, P��), is given by

P��) = maxQ0, ���) − �NOR.
The EI criterion requires that the new parameter location, �, is chosen to maximise the expectation ofP��), that is

� = argmaxK �6P��)7.
Assuming the uncertainty in the emulator ���) is normally distributed gives

���) ∼ S%���), ()��)', where ���) = EV%���)' and σ)��) = VarV%���)'.
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Rewriting P��) in terms of the random variable Z = J�K)H [�K)\�K) , where Z ∼ S�0,1) has a standard normal

distribution, gives 

P��) = maxQ0, (��)Z + ���) − �NOR.
With some manipulation, the expectation of P��) can be shown to be

�6P��)7 = (��)]�Z∗) + ����) − �NO)Φ�Z∗),
Where Z∗ = −ZO = ����) − �NO)/(��) and ] and Φ denote the probability distribution function for

the standard normal and the cumulative distribution function for the standard normal respectively. The 

covariance matrix adaptation evolution strategy (CMA-ES) algorithm (Hansen & Ostermeier, 1996) is 

used at each step to find the value of � that maximises EI. The resulting value of � is used as the control

parameters for the next set of runs. 

Immediate application of EI requires that the emulator is updated after every run. This is a major 

limitation, as it does not allow runs to be executed concurrently. To avoid this, an emulator believer 

strategy is used (Ginsbourger, et al., 2008). This allows multiple Refinement Run control parameter 

values to be generated and executed concurrently between updates of the emulator, with the number 

chosen to fully utilise the available computational resources. 

Practical application of the workflow 

The workflow offers an assisted optimisation approach guided by the user instead of full automation. 

Figure 1 shows the major steps of the workflow. First the user defines the objective by combining 

weighted quantities of interest as described above. The initial repetition number, �, representing the

number of runs that are repeated with the same control inputs values, must be selected. The appropriate 

number of repetition runs depends on the ratio between the size of the geological uncertainty and the 

impact the controls can have on the objective. For problems with relatively small uncertainty it can be 

as low as 2 or 3, while for problems with much greater uncertainty a value of 20 or more may be 

appropriate. In practice we have found that 5-10 works well for many realistic problems. The number 

of initial scoping runs may then be selected. The appropriate number depends on the number of control 

inputs and how rapidly varying the response is to these inputs. In practice we have found that C = 2 ∗C �bc� d� edCf�dg ACh f? + 1 is sufficient. This gives C ∗ � initial scoping runs. Runs can be

executed in parallel and submitted to high performance computing (HPC) resources as needed to allow 

a high degree of run throughput and maximum utilisation of available resources. 

The emulator is constructed using the resulting run data. The maximum expected value for the objective, 

and the corresponding prediction uncertainty, is determined using the current emulator. This value is 

the best prediction for the global optimum that the emulator can make given the current data and allows 

optimisation progress to be monitored. One or more batches of refinement runs are then launched to 

refine the emulator using the EI criteria described above. If the error in the estimate of the expected 

value calculated from the repetitions is too high to allow optimisation to proceed the repetition number 

may be increased for each batch. The use of an emulator believer strategy allows for more than one set 

of candidate control parameter values to be generated for each batch without subsequently updating the 

emulator. However, as this does not allow the emulator to be updated before generating each new set 

of values, we recommend that the size of each batch should be as small as possible while still allowing 

full utilisation of the available computational resources. The emulator is updated for the new run data 

and the maximum expected value for the objective over the control parameter ranges is recalculated. 

The user can then decide when optimisation has proceeded sufficiently. We suggest that for most 

problems this is when the prediction uncertainty of the current expected value for the objective 

maximum drops below the geological uncertainty for the model.  



ECMOR XVII – 17th European Conference on the Mathematics of Oil Recovery 

14-17 September 2020, Online Event

While this outlines the basic workflow, it is not prescriptive. If needed verification runs may be 

launched to add extra repetitions to existing groups of runs. For some problems, it may be appropriate 

to run a small number of runs with a very high repetition count to fully explore certain areas of control 

space before continuing. The focus is on understanding the problem rather than fully automating the 

optimisation process. 

Examples 

Several numerical examples are used to demonstrate the optimisation scheme. The first is an idealised 

1D multimodal problem to help explain how the method works. The second is an adaptation of a 

relatively simple reservoir model that has previously been used to study history matching using 

emulators. The third is an adaptation of a more recent synthetic model of a real North Sea field with 

both static and dynamic uncertainties (Taha, et al., 2019). 

One-dimensional optimisation problem with uncertainty 

Many one-dimensional problems have previously been used to test optimisation routines. We adapt a 

multimodal example by adding multiplicative Gaussian noise to its output. A collection of similar 

examples, with varying forms of uncertainty, has been developed and is run regularly to benchmark the 

method described here. The function is given by 

���) = �1 + 	) ∗ �� sin��) + � cos�2�)),   where 	 = � ∼ N�0,1),   � ∈ 60,107.

Figure 1 Bayesian optimisation under uncertainty workflow. The repetition number, r, and the number 

of runs at each stage, n, and determining when optimisation has completed are decisions made by the 

user. 
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The parameter � represents the control to be optimised and � is a random variable representing the

geological uncertainty. The structure of the function results in different degrees of uncertainty for 

different values of �. Notably, the uncertainty is highest around local optima. We seek to find the value

of � that maximises the mean of the �. 
Figure 2 shows the steps the method takes to find the global optimum. The top plot in each panel shows 

the function being optimised and the emulator at the current iteration. The bottom plot in each panel 

shows the expected improvement given the current emulator. The number of repetitions is fixed at three. 

Three sets of control parameters (giving nine runs in total) are used initially to create the emulator. The 

iterations show how the emulator can account for the uncertainty in the estimates for the mean of the 

objective and how the expected improvement acquisition function balances exploration and exploitation 

Figure 3 shows the objective values of the runs chosen by the method during optimisation and the 

expected maximum value predicted by the emulator after each new batch. It allows optimisation 

progress to be tracked and gives an indication of when optimisation may be complete. 

The last three iterations are of note as the method continually adds more runs around the current best 

optimum. This shows one of the major differences when using Bayesian optimisation on a function with 

or without uncertainty - without uncertainty the expected improvement would be zero at an already 

explored point and the method would explore other areas. In our example, the uncertainty in the mean 

estimate is still sufficiently high that the method calls for more runs in that area to try to reduce the 

uncertainty rather than explore more widely. If enough iterations are performed at that point the 

uncertainty in the mean estimate will reduce sufficiently that the method will continue to explore 

elsewhere. For higher dimensional problems this can take many iterations. If the user observes the 

method repeatedly launching runs close to a single set of control values, we recommend that a large set 

of repetitions are run at that point in order to refine the estimate of the expected value and reduce the 

uncertainty sufficiently for the method to continue to explore. 
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Figure 2 Optimisation of a 1D function with multiplicative Gaussian noise. Three repeated 

evaluations of the function are used at each of step with twelve iterations shown. Top plot in each 

panel shows the function and emulator at the current iteration. The thick blue line is the function 

mean and the shaded blue area the function mean no standard deviations. Green dots are current

function evaluations. The thick black line is the emulator estimate of the mean and the dotted lines no standard deviations showing the current emulator uncertainty of the mean estimate. The bottom

plot shows the expected improvement given the current emulator. The black line is the expected 

improvement and the blue dot the maximum of the expected improvement. This maximum value is 

used to generate function evaluations in the subsequent panel. 
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Simple Reservoir Model Well Positioning 

The second demonstration problem is a vertical well positioning problem is using a simple model with 

characteristics of reservoirs found on the UK continental shelf. The model was previously developed 

for use as a training tool for the use with emulation-based history matching. The grid spans 12000ft x 

22000ft and a modest simulation grid with 12 x 22 x 10 grid cells is used. The initial state of the model 

is shown in Figure 4. The model features several faults and three layers with different rock properties. 

It is unknown if the faults are open or closed and this is represented by three fault transmissibility 

multipliers. The exact rock properties in each layer are also uncertain and subject to porosity and 

permeability multipliers in the horizontal directions. The geological uncertainties are shown in Table 1.

Figure 3 Left: Objective values for runs chosen by the method during optimisation of the one-

dimensional problem. Green circles are individual runs, blue dots are sample means. Blue line is a 

cumulative maximum value for the sample means of the objective. Right: Evolution of the emulator’s 

current expected maximum value for the 1D function with multiplicative Gaussian noise. The thick 

black line is the emulator expected maximum value of the mean of the function and the dotted lines no standard deviations showing the current emulator uncertainty of this estimate.

Figure 4 The simple reservoir model. Left: The Initial state of the simple reservoir model, Gas is 

shown in red, oil in green and water in blue. Right: The faults in the model in three groups. 
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Uncertainty 

Parameter 

Most Likely 

Value 

Lower 

Bound 

Upper 

Bound 

Distribution 

Type 

Fault Transmissibility Multipliers 

FMUL_F1 0.5 0 1 Uniform 

FMUL_F2 0.5 0 1 Uniform 

FMUL_F3 0.5 0 1 Uniform 

Permeability Multipliers 

Kx_mult1 4.5 3 6 Triangle 

Kx_mult2 4.5 3 6 Triangle 

Kx_mult3 4.5 3 6 Triangle 

Porosity Multipliers 

Phi1 1.0 0.8 1.2 Gaussian truncated at 2 std. dev. 

Phi2 1.0 0.8 1.2 Gaussian truncated at 2 std. dev. 

Phi3 1.0 0.8 1.2 Gaussian truncated at 2 std. dev. 

An aquifer provides good pressure support from underneath the reservoir and the reservoir is expected 

to achieve high oil recovery without the need for drilling injector wells. Three vertical producer wells 

are added to the model and the method described here is used to select optimal values for the X and Y 

locations of each well. Wells are completed throughout the reservoir. Bottom hole pressures are held 

constant at each producer. The model is run for three years and the objective function is defined as 

���) = ��fdfpg dAg h�dq efAdC) − 0.2 ∗ ��fdfpg �pfc� h�dq efAdC)
The optimisation workflow was applied to the problem. An increasing number of repetitions scheme 

was used, with 4 repetitions for runs 1-100, 6 repetitions for runs 101-232 and 12 repetitions for runs 

232-304. This allowed the method to rule out large areas where it was inappropriate to position a well 

with a minimal number of runs and then refine the optimum with a larger number of runs. Finally, three 

large ensembles of 50 runs were executed at optimal positions predicted by the emulator. Figure 5 shows 

the objective values of the runs chosen during optimisation and the expected maximum value predicted 

by the emulator after each new batch. 

Figure 6 shows the best well locations obtained by the method and a prediction ensemble showing the 

total oil production for this well configuration with a large sample of the geological uncertainty. The 

prediction plot shows how large the geological uncertainty is for this problem compared to the ability 

of the controls to increase the objective. A consequence of this is that just choosing a single well 

configuration, as shown in Figure 6, may not be appropriate and that many well configurations exist 

that may be considered optimal when allowing for the envelope of the geological uncertainty. 

Table 1 Uncertainty distributions for well positioning example 
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Synthetic North Sea Reservoir Model 

The model has been described in detail in (Taha, et al., 2019), where it was used to demonstrate history 

matching with 4D seismic data. In brief, the model is a state-of-the-art synthetic reservoir model based 

on real North Sea fields. The model has uncertainties in the full geology to simulation workflow. These 

include in the PVT, structure (faults and horizons), facies, relative permeability and water saturation. 

Though, for this example, only structural and facies uncertainties are used. Notably, this results in a 

complete new geological model being created with each run. The initial state of the model is shown in 

Figure 7.  

Figure 5 Left: Objective values for runs chosen by the method during optimisation of the simple 

reservoir model problem. Green circles are individual runs, blue dots are sample means. Blue line 

is a cumulative maximum value for the sample means of the objective. Right: Evolution of the 

emulator's current expected maximum value for the simple reservoir model. The thick black line is 

the emulator expected maximum value of the mean of the function and the dotted lines no standard

deviations showing the current emulator uncertainty of this estimate.

Figure 6 Left: Final optimised well positions and distribution of fluids after three years of 

production. Right: 50 member prediction ensemble using the best single well locations obtained 

during the optimisation process and sampling the full range of uncertainty. Total oil production in 

green, total water production in blue.
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The method was used to optimise the location of a new vertical injector well. The vertical locations 

were defined using two controls, representing the horizontal and vertical directions. The parameter 

ranges for these controls defined a square region. To allow for the irregular geometry of the model and 

the constantly changing grid, a self-organising Kohonen map (Kohonen, 1982) was used to map 

between these values and the true location in the model. All geological uncertainty parameters had their 

ranges set equivalent to those found during history matching in (Taha, et al., 2019). The model was run 

for 7 years of production and the same objective function was used as for the simple reservoir model 

problem. The optimisation workflow was applied to the problem. 10 repetition runs were used for each 

set of candidate control parameter values. The relatively high number of repetitions was chosen due to 

the high level of geological uncertainty and relatively small impact of drilling a single injector in an 

already developed field. 

Figure 7 The full featured synthetic reservoir model. Left: The Initial state of the model with existing 

wells, Gas is shown in red, oil in green and water in blue. Right: The faults in the model 
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Figure 8 shows the objective values of the runs chosen by the method during optimisation and the 

expected maximum value predicted by the emulator after each new batch. As well as showing 

optimisation progress, the figure highlights the high degree of geological uncertainty relative to the 

impact of drilling a single new well. Figure 9 shows the final emulator’s prediction of the impact of 

drilling the new well at every point in the model and demonstrates the impact on the objective value of 

drilling a new well at the location determined by the method verses taking no further action using a 

large ensemble of runs. The emulator predictions plot highlights the difficulty of placing a new well in 

this model. The plot shows several local maxima, notably with one in the far top right corner that has a 

large basin of attraction. The method is able to quickly explore the maxima before further refining 

around the true maximum. Gradient based methods could struggle with local maxima such as these. 

Figure 8 Left: Objective values for runs chosen by the method during optimisation of the synthetic 

North Sea reservoir. Green dots are individual runs, blue are sample means. Blue line is a cumulative 

maximum value for the sample means of the objective. Right: Evolution of the emulator's current 

expected maximum value. The thick black line is the emulator expected maximum value of the mean 

of the function and the dotted lines no standard deviations showing the current emulator uncertainty

of this estimate. 
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Conclusions 

We have presented a Bayesian optimisation workflow applicable to reservoir simulation models with 

geological uncertainty. The workflow is underpinned by a Bayes Linear statistical emulator that 

contains extra terms allowing it to quantify the effect of geological uncertainty. The methodology has 

been demonstrated using both an idealised test problem and a pair of synthetic test cases and has been 

shown to be an effective optimiser requiring comparatively few runs, particularly when compared to 

ensemble optimisation techniques. 

In comparison to other methods for optimisation under uncertainty, the workflow does not rely on a 

fixed set of pre-generated geological realisations. Instead, the method constantly generates new samples 

from a probability distribution representing the geological uncertainty. This gives flexibility to scale the 

number of repeated runs with common control inputs as needed. Early in the optimisation process, few 

repetitions may be used with the number increased as needed when the approximate location of the 

optimum values has been located. This leads to a scheme that can use comparatively few runs while 

also allowing for a full analysis of the impact of geological uncertainty. 

In common with standard Bayesian optimisation techniques, the method is particularly suitable for use 

with computationally expensive reservoir models where the number of available runs will be limited. 

The method can quickly and efficiently explore multiple local optima before locating the true global 

optimum. However, again in common with other Bayesian optimisation techniques, it is not the most 

efficient method to refine parameter values that are close to the global optimum. We argue that in 

models with large geological uncertainty this process is not appropriate – once the potential 

improvement to the optimal value falls below the size of the impact of the geological uncertainty further 

refinement may not be meaningful. However, in practice, doing such local refinement may be required. 

In this case, we advocate applying a gradient based optimisation scheme using the output of the method 

described here as a starting point. 

Figure 9 Left: The emulator’s belief about the optimal well locations at the end of the optimisation 

process. Contour lines show the predicted objective value, the heat map shows the emulator 

uncertainty (2 standard deviations) in the predicted objective value and the blue dots are the 

control locations that were selected and tested by the method. Right: Comparison of the predicted 

objective value with no action taken with drilling of an injector well at the optimal location 

predicted by the method. Histograms are overlaid and translucent to show bins that would 

otherwise be hidden. They were calculated using a 50 member ensemble of runs to sample the 

geological uncertainty. 
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There are various technical improvements that can be made to this work. We have limited ourselves to 

drawing simple random samples from the probability distribution that defines the geological 

uncertainty. While straightforward, it would be possible to draw samples more efficiently using a 

stratified sampling scheme. This would result in smaller number of repetitions being required. We have 

not developed formal stopping criteria for our method, instead relying on diagnostic plots to allow the 

user to judge when optimisation is complete. Similarly, we have not developed automated tools to test 

when the number of repetition runs should be increased or decreased, again offering diagnostic tools to 

allow the user to make an informed decision. Our method goes some way towards solving the sequential 

design run placement problem using Expected Improvement and offers a concurrent sequential design 

technique to allow the exploitation of HPC resources using an Emulator believer strategy. However, 

many acquisition functions are available in the literature and it would be useful to investigate their 

performance on these problems. While the emulator believer strategy allows for concurrent runs it 

remains a one-step look ahead approach. Developing a full multi-step sequential design solution for the 

method is an important, if challenging, area of future improvement. 

There are also extensions to the methodology. We have focused on optimising the expected value of 

the quantities of interest. Robust optimisation schemes require optimisation of a risk tolerant measure 

of the quantity of interest This may mean a percentile, such as P10, or simultaneously maximising the 

expected value while minimising the variance. As already discussed, the framework presented here can 

be extended to handle this requirement through emulating the variance surface. While we have a flexible 

method of defining the optimisation objective from multiple quantities of interest, we have not 

considered true multi-objective optimisation in which the trade-off between optimising different 

quantities of interest can be analysed by calculating a Pareto front. The use of a statistical emulator in 

the Bayesian optimisation approach should allow rapid calculation of a Pareto front. However, further 

work will be needed to investigate this.  

Finally, we have explicitly framed our method as a solution to the optimisation under uncertainty 

problem. This was motivated by current research in this area. However, to allow for rational decision 

making, the objective function would properly be expressed as a Utility function that incorporates the 

decision maker’s risk tolerance (Berger, 2010). Rather than determining a best utility value with single 

values for the control parameters, it is then desirable to offer a set or range of control parameter values 

that can be considered optimal given the utility and the geological uncertainty. The flexible method of 

defining objective functions described here could be extended to allow definition of utility functions. 

Further, the use of emulators allows the space of optimal utility values to be explored and visualised 

after optimisation is complete. This was briefly discussed in our second example and demonstrated in 

our third example. However, more work would be required to determine how to extend our optimisation 

under uncertainty tools to encompass full decision making under uncertainty. 

Despite the many avenues of future work, the workflow described here has shown promising results on 

the test problems we have presented. Application to more complex cases and different types of 

optimisation problems is ongoing and will give more insights about the potential of the method. 
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