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Introduction
Energy depletion is one of humanity’s top problems. Finding ways to use petroleum resources 
while meeting the increasing demand for high-quality products — and environmental regulations 
— is one of the keys to the energy crisis. Energy companies need to maximize overall profit at 
the enterprise level while meeting the current customers’ requirements to resolve this crisis. 
Optimization in refineries is no longer limited to a single unit or process, a single piece of 
equipment or even a single refinery, but often considers a comprehensive scope including multiple 
refineries, units, processes, equipment and so on as shown in Figure 1. We call this scope “smart 
refining.”

Figure 1. A vision of smart refining 
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Unlike traditional process optimization, smart refining considers multiple 
processes together and extends the system to other dimensions: 
analytics, risk prevention and the optimization of equipment. In smart 
refining, every single chemical process is digitally modeled and integrated 
with other processes and relevant equipment to achieve complete asset 
optimization. Smart refining centers around optimizing across multiple 
process units at multiple scales and various scopes to obtain a unified 
optimization, as shown in Figure 2. 

Figure 2. A unified process and asset optimization for smart refining 

The system will consider a set of optimization problems for multiple 
time scales. For example, at a monthly or weekly level, we need to 
optimize planning and scheduling of one or more refineries to find the 
best scenario for achieving maximum profit while minimizing the cost 
of purchases, operations and maintenance. Once we’ve identified that 
scenario, the plan is sent to plants to operate and optimize at a daily or 
hourly level (e.g. real-time optimization). For each individual plant, we 
can further optimize, using advanced process control (APC) to maintain 
or run the plant stably and smoothly and reach the best operating point.
 
1   “Why the Future of Oil is in Chemicals, Not Fuels.” Alexander H. Tullo, Chemical & Engineering News Vol. 97, issue 8, Feb. 25, 2019.

In addition to the various time scales, the system will need to model a 
variety of plants in one refinery or across multiple refineries together. 
The best example is an optimization of the integration of refining and 
petrochemical processes. 

The refining industry’s trend for the next decade is to shift from being 
fuel-oriented to being raw material-oriented. The most important 
question in the field of energy and fuels is how to effectively and 
efficiently utilize petroleum oil, the major resource in the earth. New 
alternative oil, such as shale gas/oil, mean the demand for fuel no longer 
depends as greatly on petroleum oil. However, the increasing demand to 
use every carbon atom in petroleum hydrocarbon mixtures as raw feed 
for petrochemical processes is becoming more significant. Therefore, 
tools integrating refining and petrochemical processes will be the next 
generation technology for refiners. 

For example, ExxonMobil had already succeeded in this area, inventing 
and industrializing a technique for direct steam cracking of crude oil.1  
More refiners in the world are planning to develop new technology or 
change the operation of their plants based on the crude-to-chemicals 
trend: Saudi Aramco, PetroChina, ZPC and so on. However, the traditional 
lumped model strategy cannot solve the upcoming dilemma in the crude-
to-chemicals processes. 
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Figure 3. Representative refinery simulation model for refining and petrochemical integration

Figure 3 shows a typical flowsheet of the integration of refining and chemicals. Crude oil first goes 
through a crude distillation unit (CDU) to separate into various boiling fractions: straight-run 
naphtha, distillate, atmosphere gas oil (AGO), vacuum gas oil (VGO) and residual oil. The middle 
or heavier fraction (e.g. distillate) is upgraded through reactors (e.g. a hydrocracker) to produce 
the upgraded fractions (e.g. HCR naphtha). Moreover, light fractions from different plants (e.g. 
naphtha) can be further upgraded through reactors (e.g. reformer) and transformed into desired 
products. 

Unlike the traditional refinery, crude-to-chemicals products are not solely fuels, but the naphtha 
fractions are the feedstocks of petrochemical plants (e.g. ethane cracker and aromatics production). 
The typical scope of optimization is a single unit, such as a CDU, reformer, or hydrocracker or a few 
units. For a crude-to-chemical scope, however, the operator needs to move beyond the unit level to 
consider optimization across both the refinery and the chemical plant. 
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However, the traditional lumped model approach cannot solve the 
optimization of the flowsheet shown in Figure 3. The lumped models 
used in refining usually define their species by physical properties (such 
as boiling point or solubility) as shown on the left of Figure 4. The model 
lacks data on the essential chemical structure. As a result, the lumped 
model cannot represent the species beyond its definition. However, the 
species used to model a petrochemical plant are molecular components, 
shown on the right of Figure 4. 

In order to model refining units and petrochemical units together, we need 
to describe precisely the molecular species on the right of Figure 4 from 
the refining units. The lumped model is unable to provide this function and 
thus blocks integrating the optimization of crude-to-chemicals processes. 
In addition, the lumped model typically requires some simplifying 
assumptions of the chemistry. As a result, we cannot gain a deep 
understanding of the refining chemistry and catalyst parameters, and we 
are unable to obtain an optimal conversion for a reactor. 

Figure 4. Challenges to model refining and petrochemical integration
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For example, deep hydrodesulfurization (HDS) requires us to 
clearly describe the different structures of sulfur molecules 
and their reaction pathways. Similarly, isomerization or FCC-
MIP (maximum isoparaffin in fluidized catalytic cracking) 
requires us to represent isoparaffin structures and their 
reaction networks. What’s more, due to the increasing 
demand for high-quality products, the property model needs 
to provide much more accurate estimations to support 
process models. 

The lumped model limits us to using state-of-the-art 
property models when the task at hand explicitly requires 
chemical structures. The integration of refining and 
petrochemicals requires not only knowledge of how the 
refining stream can propagate to petrochemicals; it also 
requires a good representation of the chemistry at the 
molecular level for every refining reactor unit. We have 
developed a new approach to address this issue: molecular 
level modeling.
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Creating Molecular Models of Complex Refining Chemistries

2   ExxonMobil Annual Report, 2012.

As the fundamental feature in refining, molecules can reveal the nature of 
chemical conversions in refining chemistries. In addition, we can apply a 
property model at the molecular level to obtain high-quality predictions 
of selected important properties. As a result, molecular-level modeling 
can provide an optimal solution to utilize the resources in a wide range of 
refining and chemical processes to deliver both the yields and qualities of 
products refineries need to maximize profit. 

In past years, several groups have dedicated research in this field, including 
teams from ExxonMobil, Froment and co-workers, Klein Research Group 
(KRG), the French Institue of Petroleum (IFP Energies Nouvelles or IFPEN), 
University of Manchester Institute of Science and Technology (UMIST) 
and China University of Petroleum, Beijing (CUPB). The appendix briefly 
introduces these groups. Most of these groups, aside from ExxonMobil, are in

 universities or research institutes. As their research activities are academically 
focused, it is not always straightforward to apply their research directly to 
practical industrial applications. ExxonMobil, however, has obtained significant 
business benefits through their internal molecular modeling technology.2

Refiners need a third-party supplier to provide an integrated industrial 
solution that allows them to apply molecular modeling to smart 
manufacturing and obtain business success. As the leader in the field of 
process simulation and optimization, AspenTech started to develop a 
molecular modeling framework in 2011, focused on providing a software 
framework and industrial solution to refiners. The framework contains two 
key technologies: molecular characterization (under assay management) 
and molecule-based reactor models (under refinery modeling). The 
following sections describe the two technologies in details.
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Molecular Characterization (MC)

3   “Method of Characterizing Chemical Composition of Crude Oil for Petroleum Processing.” Chau-Chyun Chen and 
HuiLing Que. United States Patent US20130185044A1, 2013.

4  “Method to Represent Metal Content In Crude Oils, Reactor Feedstocks, and Reactor Products.” Suphat 
Watanasiri, Shu Wang and Lili Yu. United States Patent US20160162664A1, 2016.

5  “Molecular Characterization Method and System.” Suphat Watanasiri, Shu Wang, Lili Yu and Christopher Quan. 
United States Patent Application, Docket No. 1086.2060-000

AspenTech starts with feedstock characterization at the molecular level, or molecular 
characterization (MC)3,4,5. MC is a novel, practical and comprehensive molecule-based approach to 
characterize crude oil and petroleum fractions for correlation, prediction and estimation of assays 
and properties of crude oil, crude oil blends, petroleum fractions, condensates and petroleum 
mixtures. This approach provides a systematic methodology that determines the numbers and 
types of modeling molecules and their compositions to broadly represent chemical and physical 
properties of crude oil and petroleum fractions. 

Molecular characterization uses a set of model compounds to represent the species in a sample 
containing crude oil or petroleum fraction (feedstock). AspenTech has constructed a library of 
model compounds that covers the wide range of compound classes, structures and boiling ranges 
known or postulated to exist in crude oils. The properties for each model compound are estimated 
using known or AspenTech proprietary methods. When analyzing a feedstock with traditional assay 
data and detailed molecular-level data, MC will select a set of model compounds from the library 
and determine compositions of these model compounds to represent this feedstock, thus creating a 
molecular-level “model” of the feedstock. A complete description of the molecular characterization 
method can be found in the patent application.5
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Explore the key innovations of the molecular characterization technology 
further:

 ▪ Data measurement protocol

 ▪ Library of model compounds

 ▪ Properties estimation for model compounds and mixtures

 ▪ Selection of model compounds to represent feedstock

 ▪ Algorithm to process assay data

Data measurement protocol
The figure below shows a protocol for measuring petroleum fraction 
and crude oil samples to provide the data necessary for MC to develop 
a molecular-level model of the samples. Such a protocol can serve as 
a good starting point for any company that is interested in creating a 
program to manage oil sample measurements at the molecular level. 
Since the field of petroleomics (characterization of petroleum and crude 
oil using high resolution mass spectrometry) is quickly changing, the 
protocol is expected to change and improve as well.

This protocol involves many measurement techniques. The traditional 
assay measurements include distillation (TBP) curve, bulk properties 
such as density curve, sulfur content curve, PNA distribution, 
octane number, cetane number, viscosity, etc. The molecular-level 
measurements include gas chromatography/mass spectrometry (GC-
MS) for light cut range (<200C), gas chromatography/time-of-flight 
mass spectrometry (GC-ToF) for medium cut range (200-350C) and 
Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR 
MS) for heavy cut range (>350C). 

The GC-MS measurement identifies light-end components and 
compounds in the Naphtha range, which can be used directly to 
determine compositions. The GC-ToF measurements provide quantitative 
information: compound types in terms of double bond equivalent 
(DBE) and carbon numbers and intensity which are used to determine 
distribution function parameters for hydrocarbons. The FT-ICR MS 
measurements provide qualitative information: relative intensity in terms 
of DBE and carbon numbers for hydrocarbons and other hetero-atom 
types.  

Future advances in instrumentation may provide quantitative data, 
which will be more useful and can be easily adopted in the protocol. The 
MC framework can process these different types of measurements and 
consolidate them using a patent-pending algorithm to create a molecular 
level model of the crude or petroleum fraction sample.5

Figure 5. Data measurement protocol at the molecular level
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Library of Model Compounds
A prerequisite to this process is a model molecule database covering a 
wide variety of classes. The library includes compounds selected based 
on their thermodynamic stability and with structures known or likely to 
exist in crude oils, feedstocks and reactor products: 

6  “Modeling Polymer Systems Using the Perturbed-Chain Statistical Associating Fluid Theory Equation of State.” Joachim Gross and Gabriele Sadowski. Industrial &Engineering 
Chemistry Research., 41, 1084-1093. September 21, 2001.

Properties Estimation for Model Compounds and Mixtures
Compound properties of interest include normal boiling temperature, 
density, and elemental properties such as sulfur content, nitrogen 
content, etc.

The normal boiling temperature and liquid densities of the compounds 
are calculated using the PC-SAFT equation of state the elemental 
properties such as sulfur content, nitrogen content, carbon content and 
hydrogen content are calculated directly from the molecular formula.6 
Other physical properties are estimated using various formulae and 
correlations.

Selection of Model Compounds to Represent Feedstock
A process has been developed to systematically select a set of model 
compounds from the library to represent the feedstock of interest. Not all 
compounds available in the library are required to describe the properties 
for a given assay. The compound selection process depends on the types 
and qualities of data available. 

Table 1. Model compounds in MC
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The primary method for compound selection uses distributions of 
conceptual segments, which represent the molecular classes to 
determine the probability of the compounds in a given class existing in 
the assay sample. The conceptual segments were chosen to represent all 
molecule classes and structures considered. 

An important concept of molecular characterization is called “molecular 
profile.” A specific molecular profile is associated with a sample assay for 
either a crude oil or a petroleum fraction. The profile consists of the following 
key information: relative weight of each compound class, conceptual 
segment types of each class, the segment distribution information for each 
segment and viscosity parameters. This collection of information is unique 
for each sample assay and is used in molecular characterization to represent 
the model compounds selected from the MC library and the compositions of 
these molecules. The molecular profile, in essence, represents the molecular-
level “model” of the crude oil or petroleum fraction.

Algorithm to Process Assay Data 
The program will use all the data to select compounds from the MC 
library and compute compositions based on the segment distribution 
functions and their parameters set from experimental data during the 
characterization process.

Once a unique set of compounds with their compositions is obtained, 
the program will calculate bulk assay properties using properties for each 
compound and mixing rules corresponding to the property. Comparing 
the calculated bulk properties with measured bulk properties, the errors 
between these two are used to construct the objective function. Then the 
program uses an optimizer to adjust certain parameters to minimize the 
objective function in an iterative process until convergence is achieved. 
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At convergence, the final set of compounds with their compositions 
are obtained such that the calculated bulk properties are close to the 
measured bulk properties. This set of compounds with compositions 
also matches closely the molecular-level measurements of the sample 
using GC-MS, GC-ToF, Nitric Oxide Ionization Spectrometry Evaluation 
(NOISE), and/or FT-ICR MS methods. Figure 6 illustrates this iterative 
process. 

The molecular “model” of the sample assay can then be used to predict 
other properties using the underlying compounds and their properties. 
Figure 7 shows some of the properties the model calculates. The assay 
model can be stored in an assay library and may be used in a flowsheet 
simulation including reactors. 

Figure 6. The AspenTech Molecular Characterization workflow

Figure 7. Representative results from Molecular Characterization 
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Molecule-Based (MB) Reactor

7  “Molecule-Based Equation Oriented Reactor Simulation Infrastructure And Its Model Reduction.” Zhen Hou and Darrin Campbell. United States Patent Application, Docket No.: 
1086.2062-000. 2019.

Since the MC technique provides a clearer identification of molecular details quantitatively or semi-quantitatively for the petroleum fractions up to 
heavy oil based on state-of-the-art analytical techniques, it provides a solid scientific basis for developing a molecule-based reactor model in refining 
processes. In this paper, we use a typical molecule-based (MB) hydrocracker (HCR)/hydrotreater (HTR) to illustrate the technical highlights of the 
molecular reactor model.7  Table 2 shows a summary of the benefits of an MB HCR/HTR.

Customer Interests Required specs Conventional Reactor MB Reactor
High accuracy model of selected 
properties
Integration to petrochemical 

Identify branched isomers of 
PIONA

Only supports empirical correlation Includes detailed branched 
molecular species

Deep understanding and 
optimization of refining chemistries

Describe more realistic kinetic and 
mechanism

Not supported Detailed reaction path: 
isomerization, HDS

Catalyst design and development Intrinsic kinetic parameters Not supported Obtains more intrinsic kinetic 
parameters of catalyst
Less dependent on flowsheet, 
feedstocks

Resid processing Describe heavy end conversion Not well-supported Includes archipelago resid structure 
and reactions

Apply user’s in-house kinetics and 
reactor models

Allow users to add or edit 
components, reactions, kinetics

Not supported Automates code generation for 
user’s in-house components, 
reactions and kinetics

Propagation of detailed high quality 
data of reactors to PIMS

Estimate molecule-based structural 
properties

Not supported Supports estimations of molecule-
based structural properties

An optimal way to provide high 
quality data to machine learning 
model

Process data (measurable and 
not measurable) of all necessary 
dimensions

Not well-supported Inherently provides densified data 
and reveals most important data 
among complex chemistries

Table 2. New benefits and specificationss of an MB HCR reactor
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Nowadays, in addition to seeking accurate predictions of a refining conversion unit’s product yields, 
refiners are showing greater interest in the qualities of the products themselves. Many important 
properties (e.g. research octane number, motor octane number, cetane number, etc.) are strongly 
related to the molecular structures in a product stream. While a traditional lumped model cannot 
use state-of-the-art property methods to predict those properties, it is very straightforward for 
molecule-based modeling to do so.

In addition, with more detailed isomeric information, the molecule-based model can assist with 
integrating and optimizing refining processes and petrochemical processes. Because the molecule 
is the fundamental feature in hydrocarbon conversions, an MB model can reveal the detailed 
mechanism of a conversion and provide a deeper understanding of refining chemistries. 

For example, an MB reactor has the capability to describe the detailed paths of deep 
hydrodesulphurization (HDS) and isomerization. With an MB reactor, refiners can utilize more 
intrinsic kinetic parameters of the catalyst for a refining conversion unit. As a result, the model can 
depend less on the variations of flowsheets and feedstocks. Alternatively, an MB model provides 
a much wider prediction range to users. The traditional lumped model has a limited capability to 
process heavy feedstocks due to its inability to describe the feed beyond its lump definition. An MB 
model provides good support for describing resid processing. 

To reduce the complexity of applying an MB reactor, we developed a model-building tool to 
deliver different reactor models without hard-coding chemistry for a specific unit. Planning and 
scheduling tools (e.g. Aspen PIMS™) use a base delta LP submodel for optimization. An MB model 
can provide high quality data to Aspen PIMS at the molecular level, so the user can create more 
accurate submodels. In summary, the high resolution rigorous predictive model of an MB reactor 
provides high-quality solutions for refining processes. In the next sections, we will briefly introduce 
the technical details of the MB reactor.

A set of homologous series was used for the MB reactor to describe the molecular components 
in refining hydrocarbon mixtures. Figure 8 shows an example of molecular components for a 
hydrocracker (HCR).
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In Figure 8, each column represents one series containing a unique 
molecular type. The molecular types have significant reactivity and 
thermodynamic properties and thus determine the product quality 
and yields of the hydrocarbon conversions. Each row of Figure 8 is the 
continuous carbon number extension for the corresponding molecular 
type. The juxtapositions of the molecular types and carbon numbers 
represent the molecular composition of a hydrocarbon mixture. 

The molecular species in MB modeling includes two parts. As shown on 
the left side of Figure 8, it is the representation of molecular components 
in a feedstock which is provided by AspenTech MC directly. Starting 

from the feedstock’s molecular composition, we can derive the molecular 
composition of the HCR products via HCR reactions and kinetics. 

Applying typical hydrocracking reactions shown in Figure 9, we obtain the 
updated product species for this HCR example. The product composition 
then updates back to MC. Therefore, this description is self-consistent 
with AspenTech MC. Finally we obtained 2623 molecular species 
including 2431 molecular components for HCR/HTR and 192 individual 
naphtha molecules by using the Kinetic Model Toolkit (KMT), a toolbox 
to generate detailed reactions and species, from the University of 
Delaware’s Klein Research Group.

Figure 8.  A homologous series of 
hydrocracker molecular compositions
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Figure 9. Major hydrocracker reaction families

In order to validate the molecular species we set up for the MB HCR model, we compared our 
molecular compositions with the detailed analytical MS data. In this case, we used NOISE data. We 
selected the NOISE data of two oil samples (AGO and LVGO) acquired by AspenTech. The NOISE 
data provides the mass fractions of every data point in term of a molecular formula. 

We mapped every MS data point to our molecular compositions without any adjustments and then 
simulated the distillation curve based on the properties of MB molecular compositions shown as the 
blue curve in Figure 10. The red curve in Figure 10 shows the experimental distillation curves. In Figure 
10, the distillation curve derived from our molecular species has good agreement with the experimental 
data, so it demonstrated that our 2623 species can effectively describe the molecular information 
of a petroleum oil fraction. Then we applied the reaction families shown in Figure 9 to generate a 
comprehensive reaction network for hydrocracker/hydrotreater up to and including resid via KMT. 
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As a result, the MB HCR/HTR includes thousands of species and 
reactions that can support the petroleum fraction up to resid. As it is 
infeasible to tune the parameters of each distinct reaction individually, 
we apply a Linear Free Energy Relationship (LFER) to thousands of 
reactions by O (30) parameters.8,9,10,11 This is practical for users to handle. 
The parameters in the LFER are strongly associated with the catalyst but 
independent of individual species and reactions. 

To model heterogeneous catalytic reactions (e.g. HCR, FCC, Reformer), 
the LHHW* rate law was applied in MB equation oriented reactor 
(EORXR).

Using the MB EORXR model builder, we can automatically convert 
>5700 reactions and >2400 species into computer code and apply the 
kinetics and rate law mentioned above. As a result, an MB HCR model 
block was generated, which can be launched in equation oriented solver 
engine and integrated into Aspen HYSYS®. 

8  “Linear Free Relationships in Heterogeneous Catalysis 1. Dealkylation of 
Alkylbenzenes on Cracking Catalysts.” Isao Mochida and Yukio Yoneda. Journal of 
Catalysis. April 1967, 386-392.

9   “Linear Free Energy Relationships in Heterogeneous Catalysis: II. Dealkylation and 
Isomerization Reactions on Various Solid Acid Catalysts.” Isao Mochida and Yukio 
Yoneda. Journal of Catalysis. April 1967, 393-396.

10   Molecular Modeling in Heavy Hydrocarbon Conversions. M.T Klein et al. 2005.  
* Langmuir-Hinshelwood-Hougen-Watson

11  “Vacuum Gas Oil Hydrocracking on NiMo/USY Zeolite Catalysts. Experimental 
Study and Kinetic Modeling.” Tao Zhang et al. Industrial & Engineering Chemistry 
Research.  54.3 (2015): 858-868.

Figure 10. The consistency of species between MB and NOISE data
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A case study for hydrocracking using MB EORXR
For this case, we obtain the detailed data analysis for both feed and 
product shown in Figure 11.12 We can use the detailed measurement data 
to calibrate. Figure 12 shows the calibration results as parity plots. 

12  “Vacuum Gas Oil Hydrocracking on NiMo/USY Zeolite Catalysts. Experimental Study and Kinetic Modeling.” Tao Zhang et al. Industrial & Engineering Chemistry Research.  54.3 
(2015): 858-868.

Figure 12 shows that the predicted data is in good agreement with the 
experimental data at the molecular level, which validates that the MB 
HCR model can allow users to simulate/calibrate a hydrocracker at the 
molecular level. In addition to the routine properties reactor models 
(e.g. density, distillation curve, etc.) provide, the MB HCR model can 
give users more predictive results in terms of molecular details shown in 
Figure 13 and thus help users obtain insight into the reactor process.

Figure 11. A detailed measurement of feed and product for a hydrocracker case Figure 12. Detailed calibration results for a hydrocracker case 
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Figure 13. Predictive detailed simulation results of an MB HCR model
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In order to use the MB reactor for a complex flowsheet, we developed a technique to allow the molecular information to propagate through a wide 
range of refinery models as shown in Figure 14.

Starting from MC, the crude oil measurements can be transferred into the molecule-based composition as a feed stream. The feed’s detailed 
molecular composition will be directly used as the input data of an MB HCR reactor. The MB HCR reactor can give users the molecular composition 
of a hydrocracker’s product streams. Then that molecular information can be propagated through the flowsheet to common Aspen HYSYS unit 
operations such as flashes, columns, mixers, etc. As a result, users can create and optimize a molecular-level refining flowsheet and take adantage of an 
opportunity to address the dilemma of integration between refining and petrochemical units in Figure 3.

Figure 14. Molecule-based refinery models
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Using Molecular Modeling to Optimize the Integration of 
Refining and Petrochemical Processes
Shown in Figure 15, the molecular compositions are characterized by MC first, then passed through 
a crude distillation unit (CDU). All the product streams of the CDU contain the detailed molecular 
information and are further upgraded by selected reactors. 

For example, the distillate or gas oil can be sent to a hydrocracker. By using an MB HCR model, we 
can obtain the molecular compositions from the products of a hydrocracker (e.g. HCR naphtha). The 
mixed stream of HCR naphtha and straight naphtha with molecular compositions can be directly 
sent as the feed to an ethane cracker or catalytic reformer whose product can serve as the feed of an 
aromatics production unit. With this molecular refining model, users can calculate the contributions 
of a naphtha’s molecular composition to ethane cracker and aromatics production not only as the feed 
of those two petrochemical units, but also trace the composition of the feed naphtha to upstream to 
the crude oil selection, the CDU, the hydrocracker, the reformer and so on. This insight allows users to 
create an optimization across the refining units and petrochemical units.  

Figure 15.   Molecular refinery models for petrochemical integration
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In addition to helping users optimize a wide range of units across refining 
and chemicals plants, molecular modeling can provide the optimal 
solution through various time scales. Aspen Plus® has the ability to 
model petrochemical processes (e.g. BTX, ethane cracker, etc.). The MB 
reactor can seamlessly load refining reactor models into Aspen Plus 
(shown in Figure 16) to model an MB HCR with petrochemical units 
together. Users can set up a molecular reactor model in Aspen HYSYS 
from scratch. After the model is calibrated well, users can load the model 
into Aspen Plus to perform some advanced operations: set up a steady 
state model working with petrochemical units and link with Aspen 
OnLine® to run offline/online process optimization shown in Figure 17.

Figure 16. MB HCR reactor model in Aspen Plus
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On the other hand, molecular modeling can give the LP vectors to an Aspen PIMS submodel at 
the molecular level. For example, a reformer unit in Figure 15 is a key reactor to convert a refining 
stream to a feed for aromatics production. In the Aspen PIMS model, the submodel of such a 
reformer needs the feed’s detailed molecular information (e.g. detailed PIONA C# break down) in 
order to work with aromatics model. Without molecular modeling, it is hard for users to propagate 
the necessary information to the reformer LP sub-model from other units; thus the model is 
unable to effectively consider the effects of the changes of crude oil to the reformer during the 
optimization in PIMS. 

However, using molecular modeling, any changes on the refining side in Figure 15 (including crude 
oil) can be seamlessly propagated to the reformer’s feed in terms of molecular compositions, 
providing the needed information to the submodel. If the molecular information is available from 
the upstream PIMS submodels that feed the reformer, the molecular sub-model of the reformer 
can be integrated into the PIMS refinery model. The base and delta vectors for molecular reformer 
model and the upstream models can be generated from the MB reactor models in Aspen HYSYS.

Figure 17. Aspen OnLine to apply the MB HCR reactor model to online open-loop/
close-loop optimization
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For example, through a set of case studies 
shown in Figure 18, it is straightforward to 
generate the base and delta vectors for the 
submodel of the reformer. Then we can support 
use of the molecular information directly as the 
LP vectors in the submodels of PIMS (shown in 
Figure 19) and allow the refining and chemical 
models to be optimized together.

Figure 18. Case study of reformer to generate LP vector at the molecular level

Figure 19. Submodel of a reformer in Aspen PIMS at the molecular level
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Summary
Molecular modeling is an optimal solution for smart manufacturing in refining at the enterprise 
level: it addresses multi-scale modeling and optimization across a wider variety of refining and 
chemical units across one or multiple refineries. Because the molecule is the essential feature in 
complex hydrocarbon conversions, molecular modeling can use it as a basis to establish the best 
language system for complex refining process chemistries and provide the foundation to smart 
manufacturing in refineries. 

As shown on the left part of Figure 20, molecular modeling can help users leverage the research 
results of fundamental science to build industrial process models. As we discussed before, MC and 
MB reactors can convert the measurements from state-of-the-art analytical chemistries (e.g. FTICR 
MS/HPLC/NOISE/GC) to molecular compositions using in our process models. The advanced 
property method (PCSAFT) in MC is derived from statistical thermodynamics and provides the 
data support for process simulations. 

Moreover, we can use the principles of chemistry directly in MB reactors. For example, the 
classic principles of the Polanyi correlation, and detailed expressions of the adsorption factors of 
catalysts are used to constrain and set up the kinetics and LHHW rate laws in the reactor model. 
The simulations and property calculations from quantum chemistry are used to help the MB HCR 
reactor determine the detailed HDS paths and limit the number of molecular species to a practical 
level. Molecular modeling can be used as a platform for a refiner’s R&D center to set up a “smart 
research center” to use their academic knowledge base and convert it to industrial process models: 
build the library of molecular compositions for crude oils, set up the molecular property database, 
tune the intrinsic kinetic parameters of catalysts and turn them into a quantitative database of 
catalysts in different processes and deliver the fundamental models for different refining and 
chemical units. 

25



As shown in the right part of Figure 20, the molecular process models developed from such a “smart research center” can be directly applied to a wide 
range of refining and chemical units at multi-scale level and thus help users optimize “smart refineries” at the enterprise level. By using the Aspen 
molecular modeling technique, users can integrate molecular characterizations of crude oils and MB reactors into an entire Aspen HYSYS flowsheet 
including a wide range of refining and chemicals units. When reactor model claibrations are completed, selected reactor models can be loaded into 
Aspen Plus and connected with Aspen online for advanced applications: the open-loop/closed-loop online optimization of local refining and chemical 
units. In addition, the results of molecular modeling in Aspen HYSYS can be applied to support the submodels of Aspen PIMS (e.g. molecular level LP 
vectors).  

Aspen molecular modeling serves as the DNA for refining processes to connect different process units and set up the bridge between fundamental 
science and industrial applications. It is the foundation of smart manufacturing and asset optimization in refineries.  

Figure 20. Molecular modeling provides the optimal solution to smart manufacturing 
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Appendix: Short Overview of Contemporary Research 
Groups on Molecular Modeling

13   “Structure-oriented Lumping: Describing the Chemistry of Complex Hydrocarbon Mixtures.” R.J. Quann and S.B. 
Jaffe. Industrial & Engineering Chemistry Research, 31(11), 2483-2497. November 1, 1992.

14   “Building Useful Models of Complex Reaction Systems in Petroleum Refining.” R.J. Quann and S.B. Jaffe. Chemical 
Engineering Science. May 1996.

15   “Single Event Kinetic Modeling of Complex Catalytic Processes.” G.F. Froment. Science and Engineering. Volume 47, 
Issue 1. 2005. 

1. ExxonMobil
ExxonMobil uses a method called structure-oriented lumping (SOL) to describe the composition, 
reactions and properties of complex hydrocarbon mixtures.13,14 The basic concept of SOL is that 
hydrocarbon molecules can be described as a vector, with the elements of the vector representing 
structural features sufficient to construct any molecule. Each molecule in a mixture is then 
represented by a structure vector. This approach is still lumping, but at the level of a molecular 
structure. The structure vector provides a framework to enable rule-based generation of reaction 
networks and rate equations involving thousands of components and many thousands of reactions. 
ExxonMobil provides a leading example at the industrial level that shows the large benefits of using 
molecular modeling across ExxonMobil operations including refining and chemical units.

2. Froment and his coworkers
Froment and his coworkers developed a single-event approach to describe the detailed kinetic 
models in refining chemistries.15 They used a Boolean matrix or a vector to represent molecules 
digitally and derived an algorithm to generate the reaction network. The algorithm was applied to 
thermal cracking and hydrocracking. The single event approach essentially describes the molecular 
kinetic models of complex chemistries at a mechanistic level. It is a useful approach for light oil 
conversion (e.g. reforming, alkylation, methanol to olefin) and model compound studies. However, 
it requires significant computational resources to apply this approach for conversion processes of 
heavier feedstocks. 

27



3. The Klein Research Group (KRG)
The KRG at the University of Delaware uses the bond-electron (BE) matrix to describe the structure of a molecular species and developed an 
automated molecule-based kinetic model building toolbox for complex mixtures and chemistries: Kinetic Model Toolkit (KMT).16,8 KMT includes three 
main tools (INGen17, CME18 and KME18,19) and a set of auxiliary applications.

KRG represents a molecular component as BE matrix that represents a full 2D atom-explicit structure of a molecule, a radical species or an ion species. 
Essentially, any chemical reactions can be regarded as bond-making or bond-breaking processes. Therefore, a reaction that transfers the reactants to 
the products can be described as a matrix operation: the reaction matrix is added to the reactant matrix to calculate the product matrix. This approach 
was developed as an automated reaction network generation tool called INGen. 

The molecular representation of a feedstock is the initial condition for kinetic modeling. CME describes a complex feedstock as a set of homologous 
series. Each series has a unique molecular structure called a core and is extended by the carbon number extension. Based on the analysis of reactivity 
information, thermodynamic properties and physical properties, a sub app of CME called HOUGen (Hydrocarbon Oil Universal Generator) was 

16   “Computer Generated Pyrolysis Modeling: On-the-fly Generation of Species, Reactions, and Rates.” Linda J. Broadbelt, Scott M. Stark and Michael T. Klein. Industrial & 
Engineering Chemistry Research. April 1, 1994.  33.4 (1994): 790-799

17  “User-controlled Kinetic Network Generation with INGen.” Craig Allen Bennet. Rutgers, The State University of New Jersey-New Brunswick, 2009.
18  “Software Tools for Molecule-Based Kinetic Modeling of Complex Systems.” Zhen Hou. Rutgers, The State University of New Jersey-New Brunswick, 2011.
19  “Computer Aided Kinetic Modeling with KMT and KME.” Wei Wei, et al. Fuel Processing Technology 89.4 (2008): 350-363

28



developed to obtain the optimal molecular structures (footprint) of complex feedstocks that range 
from naphtha to resid. 20 CME describes the mole fractions of the footprint of a feedstock with a set 
of statistical probability density functions (pdfs) which require just a small number of parameters 
and employs an optimization loop to minimize an objective function in terms of available analytical 
measurements. As a result, an optimal molecular representation of a feedstock can be obtained. 
CME derives the optimal molecular compositions of a feedstock as BE matrices that can be 
incorporated into kinetic modeling seamlessly.

KME provides a user-friendly VBA interface that allows users to convert complex reaction networks 
to C code and compile to an executable kinetic model automatically. Users can use the compiled 
model to run once-through simulation or parameters tuning for research purposes. 

KMT provides an automated toolkit to support the development of detailed molecular level kinetic 
models for academic researchers. AspenTech uses KMT to obtain the detailed species and reaction 
paths of a complex model and utilizes them to deliver an industrial MB HCR reactor model for 
general users.

4. University of Manchester
Towler and colleagues at UMIST (University of Manchester Institute of Science and Technology) 
developed a MTHS (molecular-type homologous series) matrix to represent the molecules in 
a feedstock and built kinetic models based on this MTHS representation. 21 The MTHS matrix 
characterization approach represents the composition of a petroleum fraction in terms of 
homologous series and carbon number information. The matrix framework lumps all the structural 
isomers of a particular molecular size into one matrix entry. This MTHS matrix is unable to 
represent the detailed multi-branch paraffins in light end oil conversions. In addition, the molecular 
structures of polyaromatic hydrocarbon (PAH) and aggregated heteroatom (S, N) rings (>=4) is 
limited. Therefore, it can be used to build diesel-gasoil range models within its pre-definition of the 
MTHS, but this MTHS matrix is hard to extend to structures beyond this pre-definition. 

20  “Atom-Explicit Composition Models of Heavy Oils.” Zhen Hou, Linzhou Zhang, Triveni Billa, Scott Horton and M.T 
Klein, 8th Symposium on Heavy Petroleum Fractions, 2014.
21  “Molecular Modeling of Petroleum Processes.” B. Peng, Ph.D. dissertation, UMIST. 1999.
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5. IFPEN
IFP Energies Nouvelles (IFPEN) is a major research and training institute in Europe in the fields of energy, transport and the environment. Starting in the 
early 2000s, IFPEN developed a method to describe feedstock and kinetic reaction networks at the molecular level. For feedstock characterization at 
the molecular level, IFPEN proposes a two-step method, SR-REM (statistical reconstruction and reconstruction by entropy maximization). 22,23 IFPEN 
uses the single event approach discussed above to develop the kinetic and reactor model. IFPEN’s limitations are similar to those of Froment’s group.

6. China University of Petroleum, Beijing (CUPB)
Derived from ExxonMobil’s SOL approach and BE Matrix’s idea from KRG, CUPB developed a combined approach called SU-BEM to represent 
molecular species in hydrocarbon mixtures. 24 A complex molecule is classified as a set of functional structural lumps similar to the SOL method. Each 
of those complex structures is represented as a bond electron matrix similar to the KRG method. Based on this simplification, CUPB developed a set 
of tools like KMT to model feed compositions, generate reaction networks, and generate the numerical equations of the models that can be solved via 
MATLAB.

22  “Molecular Reconstruction of Heavy Petroleum Residue Fractions.” J.J. Verstraete, et al. Chemical Engineering Science, 65, 304-312. January 2010.
23   “Molecular Reconstruction of Naptha Steam Cracking Feedstocks Based on Commercial Indices.” Kevin Van Geen et al. Computers & Chemical Engineering, 2007, 31, 1020-1034.
24   “Molecular Composition Modelling of Petroleum Fractions Based on a Hybrid Structural Unit and Bond-electron Matrix (SU-BEM) Framework.” Song Feng et al. Chemical 

Engineering Science, 201, 145-156. June 29, 2019. 30
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