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Background
A well-engineered Aspen DMCplus® application generally delivers substantial financial benefits via feed 
rate increases, better conversion, higher yield of valuable products, and reduced energy consumption. 
However, processes often change over time, requiring modification of the models. This is very 
problematic, because the cost of modifying the model can be roughly 80% of the initial cost.  

One Plus One Equals Three
When a mismatch between the model and actual plant performance exists, we need to revise the model 
to eliminate the mismatch. 

The workflow is as follows:

•	 Collect current and representative data

•	 Pre-process the data to remove bad values and other data anomalies

•	 Produce a set of candidate models and evaluate the accuracy of those models with due 
consideration of dynamics, gain ratios and relative gains (RGA numbers)

•	 Adequately test the candidate models considering the current constraint sets

•	 Configure and deploy the controller 

Most major commercial APC vendors offer tools to assist in these tasks. These tools have provided 
good value by reducing time and effort, but the potential benefits that can be achieved by making 
these tools work more synergistically are far greater than the benefits delivered by the individual tools.

A Conflict of Interest
There is little doubt that automated testing tools deliver good data and reduce the need for 
continuous monitoring by engineering. In spite of these benefits, step testing is still seen by many 
as a necessary evil. One issue is the price of generating accurate data. The current generation of 
automated testing gives us a binary choice: operate the plant with the controller turned on to accrue 
benefits or turn off the controller to collect open-loop data—and give up the benefits during the test. 
Because of the limitations of model identification software, it is necessary to turn off the controller to 
prevent current input values from being correlated with past output values through feedback. 

With the controller turned off, the amount of product giveaway could potentially make the test very 
expensive. This creates a conflict of interest: plant operators and managers want the test over with 
as soon as possible while engineering wants to ensure that the generation of data produces high 
information content. How do we deal with this conflict? How can we generate data suitable for 
modeling while continuing to optimize the operation of the plant? 

Co-Existent Test and Control
If we need a controller (model) to achieve some level of process optimization during the test, that 
implies the need to safely step test a process unit with an inaccurate model. Can we start with low 
accuracy models, missing model curves and establish an iterative process of re-identifying the model 
matrix? That drives the need for a controller to tolerate large amounts of model mismatch. 
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It’s known that when the mismatch grows large enough, the steady-state targets calculated by the 
linear program may start jumping around. Weak process handles may suddenly be used, leading to 
large movement in these handles. This occurs when the controller exploits degrees of freedom that 
require large MV movements for a small improvement in the benefits. 

A standard MPC application typically calculates a new LP steady-state target every single cycle, no 
matter how insignificant the incremental changes are in the cost function. The new steady-state 
targets are then used to calculate a new dynamic move plan, which guarantees that the controller 
has integration action and can reject disturbances and remove offset caused by gain errors. This can 
sometimes cause an overreaction to measurement noise, or lead to large MV movement if near co-
linearity is present in the model matrix (i.e., the RGA repair work has not been done). 

Tuning parameters are available within Aspen DMCplus to deal with these issues. Moderate 
accuracy models can be used if sensible MV move suppression values are used. In addition, 
controller robustness can be traded off with LP optimization performance by using a lower RGA 
repair threshold in the offline SmartAudit tool. The use of the LP Economic Relaxation parameter 
and MV/CV cost ranks can help to prevent the LP from flipping from one solution to the next, for 
small incremental benefits. In addition, prediction error filtering can be used to prevent overreaction  
to noise and cycles present in the CVs. As a last resort, the selective use of MV minimum move 
variables can always stabilize a controller with substantial model mismatch. 

Background Testing 
It has been observed that an Aspen DMCplus controller in the presence of a very large model 
mismatch will behave in a much more stable way when all MVs are set to minimum move instead of 
minimum cost, like in SmartStep multi-test mode. However, when the controller stops optimizing, it 
only cares about constraint protection. This indicates that pushing for full LP optimization every cycle 
that exploits ALL the degrees of freedom may not always produce the best result. 

There should be a middle ground between running the controller with minimum cost setting and running 
the minimum move setting, so that one can specify the degree of trade-off between optimization 
and robustness. In particular, this middle ground approach opens the door to the use of background, 
low-impact step tests for periodic model updating purposes. The challenge is determining when the 
engine should run in full optimization mode (every MV on minimum cost setting) and when it can run 
in constraint control mode (minimum move MVs). To make the data usable for model identification, 
we would like to impose small amplitude test signals onto the normal control action, but in such a way 
that the CV deviation will be in the safe direction (away from the active constraint). The tricky part is 
deciding when and how large the MV step can be such that the temporary relaxation in the optimization 
result (economic giveaway) is constrained to an acceptable range. 

Closed-Loop Subspace Identification
It has been shown that there are significant differences in the efficiency and accuracy of the various 
identification algorithms. The choice can have a dramatic impact on the amount of model ID data 
required. There are also significant advantages for the algorithms that can accurately capture process 
dynamics and/or deal with co-linearity. The table below illustrates the characteristics of a subset of 
available identification technologies. 
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MIMO? MISO?
Non-Linear 

Optimaztion 
Required?

Catch Fast 
Dynamics?

Catch Slow 
Dynamics?

FIR No Yes No No No

Prediction Error (PEM) No Yes Yes No No

ARX No Yes No Yes No

Subspace (SS ID) Yes Yes Yes Yes Yes

There are also differences in the algorithms with respect to the use of closed-loop data. The graphs 
below illustrate the difference in Subspace vs. FIR. We can leverage the advantages of Subspace 
identification to utilize background step tests for periodic model updating purposes. The graphs 
below contrast the differences in model quality between Subspace and FIR identification when some 
degree of closed-loop data is utilized.

Identification with PRBS-Test.  
Subspace ID: Closed-Loop with 
10% Noise.

Identification with PRBS-Test. 
FIR ID: Closed-Loop with 10% 
Noise.



6 An Enhanced Iterative Process for Maintaining APC Applications ©2016 Aspen Technology Inc. 11-9094-0816

Some Breathing Room 
There have been many cases where controllers were not properly maintained and were eventually 
turned off by the operators. Peaks in the APC engineer’s workload and a host of other reasons could 
result in extended periods of time going by between the onset of poor controller performance and 
corrective maintenance. If the condition is allowed to persist for too long, the operators will turn 
off the controller. Given that we do not always have the opportunity to immediately work on the 
controller, we need a way for the controller to change from an optimizing controller to a robust 
controller and thereby allow the application to continue to operate until the model updates can be 
completed. 

Adaptive Process Control
In late 2011, researchers at Aspen Technology developed a new switching control algorithm that has 
the ability to control the process by making step-like changes to the MVs and stabilizing the process 
even if significant model mismatch is present, while also preventing the LP targets from flipping 
around. It is intended to work as a robust controller where minimal MV movement is made while 
active process constraints (active CVs) are kept at or close to limits. Disturbances are still rejected 
as needed, limit changes are followed, changes to feed forward signals are taken into account, and LP 
cost function changes are used immediately—all without the steady-state targets jumping around or 
the dynamic move plan engine making unacceptably large changes to the MVs. 

In this way, the controller maintains process stability while also performing very small perturbation 
tests that generate closed-loop data. The data is of adequate quality which allows us to fit 
sufficiently accurate models via the new closed-loop Subspace identification algorithm. The process 
unit can be operated close to the point desired by the operations staff, even if the LP costs are 
not entirely correct. The LP can be setup to push a specific set of constraints via the Economic 
Relaxation parameter and MV cost ranks. Adaptive Process Control can be setup to ensure that 
product giveaway and feed rate reductions are minimized. In all scenarios, the engineer has the 
ability to define the degree of trade-off between optimal control and optimal test data. Moving from 
traditional sustained value tools to Adaptive Process Control requires more than robust controller 
behavior. To create an effective continuous process for updating models requires several pieces of 
innovation:

1.	 Automation to replicate human judgment when editing test data to remove bad values

2.	 The ability to detect PID loop status in conjunction with data editing

3.	 Economic Relaxation to provide room for the modest process perturbation while still maintaining 
optimizing control

4.	 Automation to generate candidate models 

5.	 Methods to automatically determine the quality of candidate models

Adaptive Process Control combines the power of switching the controller with improved data pre-
processing and identification technologies—enabling a new way of maintaining APC applications.  
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While controlling the unit, we can also use this discrete robust control mode as a benign background 
perturbation mode to collect free test data while the unit is approaching optimal process operation. 
To do this, the MV sequence is made up of small GBN (Generalized Binary Noise) sequences plus 
discrete staircase-like MV movement when the Aspen DMCplus engine turns on to deal with CV 
excursions beyond the CV limit. 

The main benefits of this approach include:

•	 Robustness: The discrete switching control approach is highly robust, especially with regard to 
co-linearity/RGA errors. In several simulations, RGA sign errors in weaker relationships could be 
tolerated. Of course, RGA sign errors in the dominant (strong) relationships should be avoided. 
Individual gain errors of 5-10x can often be tolerated. Model errors of this magnitude in the 
dominant relationships can be removed from the “seed” (starting) model with just a few days of 
test data.

•	 	High-Quality Test Data: The data generated in this way contains only minimal amounts of 
feedback correlation and is therefore suitable for Subspace model identification, even if 
significant disturbances are present and even if the signal-to-noise ratio is well below 6:1. The 
latest version of the aspenONE APC Subspace identification algorithm is “closed-loop capable” 
and can handle up to 80% closed-loop data. 

•	 	Graceful Degradation Capability: The new controller algorithm underpinning Adaptive Process 
Control provides a way to immediately stabilize an Aspen DMCplus controller that is exhibiting 
model mismatch via a simple mode change in the web interface. This provides a graceful 
degradation capability in Aspen DMCplus, so it can handle slow or abrupt changes in process 
dynamics. The controller can then run in Adaptive mode for several weeks or even months, while 
the software sifts through the data to remove undesirable segments and produces candidate 
models without the need for human intervention. When the model matrix converges, the RGA 
repair work can be done via SmartAudit and the Aspen DMCplus controller can then be re-
commissioned, getting us back into profit hungry mode.

•	 Moderate-to-Good Process Optimization Capabilities: In Adaptive mode, the process unit can 
be driven fairly close to the desired operating point even if the LP costs and gains are not entirely 
correct. The LP can be setup to push towards a specific set of constraints via the Economic 
Relaxation parameter and MV/CV cost ranks. In this way, Adaptive Process Control can be 
configured to ensure that product giveaway and feed rate reductions will be negligible, so that the 
unit will be seen as operating better than before. 

•	 More Productive and Less Time Intensive: Full time engineering supervision will not be required 
for more than the first few days when the controller is in Adaptive mode. Once the strong models 
have been updated with new model curves via the web interface, the MV and CV limits can be 
opened up. Once a week, the engineer can have a look at the new model and decide if an update 
is needed. 
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Conclusions

Appendix I

The synergy between innovations in model identification, automated testing and controller 
operating modes are creating opportunities to bring new efficiencies to the process of sustaining 
APC controllers. These innovations address some of the long-standing challenges facing APC 
practitioners: dealing with closed-loop data, managing APC solutions with model mismatch until 
repairs can be completed, and reducing the operational impact of step testing. 

With these advances, we now have the technology to begin constructing continuous improvement 
processes in lieu of the traditional sustained value workflows. We have the ability to switch between 
optimizing control and constraint control. We can gently perturb the process while in constraint 
control to gather usable process data, and we have improved model identification software to 
produce good models using closed-loop data and the data from the background perturbation of 
the process. By unifying these new capabilities with integrated interfaces and workflows within the 
software, we’re delivering Adaptive Process Control – an iterative, continuous process for sustaining 
the value of APC applications.

How Does Adaptive Process Control Work?
When in Adaptive mode, the optimization algorithm recalculates the steady-state (LP) objective 
function at every time step and stores this cost function (Joptimal). It then calculates the cost function 
at the current MV targets (Jcurrent) with minimum move setting (constraint control), compares the two 
cost function values, and calculates ΔJ = Joptimal - Jcurrent . If ΔJ is larger than the user-specified tolerance, 
the Aspen DMCplus engine will generate a move plan and push the process towards the new optimal 
solution. However, most of the time it will not implement the new MV targets since the two solutions 
are usually within the specified tolerance.

In this diagram, y1 and y2 are the two active CV constraints, and u1 and u2 represent two particular 
MVs.

The technology ensures that the two CVs 
will be kept inside of the blue triangle. 
In effect, an additional cost constraint is 
imposed so that the cost function will not 
degrade more than the user-specified ΔJ 
(Delta J). When inside the blue triangle, 
the engine will generate step moves for the 
requested manipulated variables, similar to 
the multi-test in the traditional SmartStep 
with the exception that the step move will 
not violate the user-specified ΔJ constraint.
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How Does the Algorithm Perform in Practice? 
Below is a simulation using Aspen DMCplus with zero model mismatch and where all the CVs 
have wide ranges, so we rely on the LP to determine which MVs should move up or down. (We will 
introduce very large model mismatch at a later point in the discussion.)

Note that the low limit is active for CV:AI-2021 and CV:AI-2022, while MV:FIC-2001 and 
MV:FIC-2004 are pushing towards their high limits (see below).
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Also note how MV:FIC-2002 goes through the same repetitive sequence as it rejects this simulated 
disturbance, which repeats every 16 hours. The disturbance is made up of a ramp that changes 
direction every 8 hours, plus random noise.

Now let’s switch over to Adaptive mode and test for the following:

•	 	Will the controller still push the unit towards the same active constraint set?

•	 	Can it respond appropriately to CV limit changes?

•	 	Will it correctly deal with unexpected disturbances?

To more clearly see what is going on, we will start with a noise-free simulation. A second example is 
later presented showing how the new engine responds to noise and large disturbances. We set the 
Adaptive mode Calibration Ratio to 0.20 (or roughly 20%, a fairly large value), used the same tuning 
and limits, maintained zero model mismatch, and switched the application from an Aspen DMCplus 
operation into Adaptive mode - see the figure below. 

Note that the operator high limit for CV:AI:2020 was increased from 4.0 to 5.0 (green line) at the 
start of the simulation. The step-like movement in the red MV LP targets indicate that the Aspen 
DMCplus algorithm turned on and a set of Aspen DMCplus control actions took place to drive the 
CV to the new high limit. 
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A few hours later, the algorithm changed from an Aspen DMCplus operation back into an 
economically constrained multi-test operation, with small MV steps being introduced again. The 
CV high limit was then changed again from 5.0 to 4.0. The red MV LP targets indicate that the 
Aspen DMCplus engine turned on for a short period of time, and once the cost function was close 
to optimal, the multi-test algorithm took over to make a series of step-like moves that drove the CV 
towards the new CV limit. The algorithm could now make a larger-than-usual step in FIC-2004, since 
there is now more room available than before. 

If we used a much smaller calibration ratio, or if we made a larger CV limit change, ΔJ would be big 
enough and the engine would switch over to the Aspen DMCplus control mode for 0.5 * time to 
steady-state (TTSS). 

Note that the active CV:AI:2020 is moved just inside its CV limits, and just barely touches the CV 
high limit during the largest excursions (due to a pronounced inverse model response). This is typical 
behavior while in Adaptive mode. If you believe that these small changes in average MV and CV 
values will lead to appreciable giveaway losses, then simply open up the MV and CV limits by a small 
amount. In practice, the steps are so small that they will be barely visible above the normal process 
noise and disturbance effects.

As mentioned before, the average value of the CV is shifted down in order to be inside the CV low 
and high limits, compared to Aspen DMCplus which would have an average CV limit equal to the 
CV limit (about 50% of the values would be above the limit, and 50% below the limit). It aims to be 
slightly conservative. Notice how Adaptive mode causes the controller to actively follow the CV limit 
changes, always trying to stay on the safe side of the active CV limit. The MV movement appears to 
be very similar to what you would expect from a controller with limited MV resolution. In fact, in this 
configuration, multi-test is setup to act like a very benign discrete amplitude switching controller, 
with fairly small MV steps imposed on top of an MV sequence that follows a staircase trajectory. 
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What are the benefits of using a discrete controller?  First, the MIMO aspects of the model (RGA 
numbers and gain ratio differences) can be substantially inaccurate if the process unit has degraded 
since the original step test was done. The same is true early on in a new Aspen DMCplus project 
when we have limited test data. The algorithm was designed to maintain stable control of the 
process unit in the presence of very large model errors. Simulations were constructed that contained 
gain errors as large as 10x – large enough that the Aspen DMCplus controller went unstable due to 
LP flipping, yet Adaptive mode maintained stable operation of the unit. 

Even if the individual strong model curves (which are the only ones that matter while in Adaptive 
mode) have significant error in terms of shape and gain value, the algorithm will be able to handle it. 
All we assume is that the sign of the strong models (on typical move scaling) are correct, and within 
one order of magnitude of the true value. Weak models may be absent or may even have the wrong 
sign. Adaptive APC is clever enough to largely ignore weak relationships, expecting them to be highly 
inaccurate. The algorithm avoids having to invert 2x2 or larger square matrices, and we have found 
that the co-linearity repair is not yet needed and the seed model may be very sparse. Once we are 
ready to go back into the Aspen DMCplus Control mode, the co-linearity analysis and repair tool 
should be used to fix the RGAs down to a threshold of at least 10, preferably as low as 5.0.

How Does Adaptive Process Control Handle Process 
Disturbances?  
So far, we have only looked at a noise-free simulation. If we add major disturbances to the simulation 
(noise plus prolonged periods of strong drift), we get the following result below while in Adaptive 
mode.

As before, note the small blip in the MV LP target (in red) at the point in time when the CV limit 
change was done. The value of the LP targets at this point indicates where the Aspen DMCplus 
controller would have moved the MVs and CVs, had it decided to turn on. Once again, the ΔJ was too 
small to change the mode. 
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The limit changes are followed after a two hour delay, reaching the LP targets calculated at the time 
of the limit change. Once at the active constraints, the CVs tend to touch the CV limit only during 
worst case disturbances. In effect, the algorithm is trying to iteratively determine MV targets that 
keep the CVs just inside the CV constraints.

Appendix II
How Does Adaptive Process Control Deal with Extreme 
Model Mismatch?
In a recent forum post on LinkedIn.com, the participant asked an interesting question, “You only 
want to revamp a controller with a poor model. A poor controller would be flipping the LP targets 
frequently, the MVs could be cycling, or the LP could be pushing in the wrong direction. How can you 
use a poor model to safely step test a process unit?” 

The real question being asked here is: Does bootstrapping work? Can we start with a low accuracy 
model, with many missing model curves, perhaps even some sign errors, and get Adaptive APC 
going reliably so that it can generate new data that we can use to re-identify the model matrix?

Let’s start with very substantial model mismatch (in fact, excessively large model mismatch), and 
see what happens to Aspen DMCplus. The true process response is shown in blue below, while the 
controller model is shown in red.

Note that this is a distillation column and there is a model curve in every cell (full density). The 
controller model matrix is shown in red and has very few model curves (low density). With the 
exception of the tray temperature MV, only one model curve is present per CV, and very large model 
errors are present (between 2x and 10x). 
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The controller model has been setup with very low model density, as shown in the figure below.

All the feed forward models have been removed. These model errors were generated via random gain 
multipliers.

As can be seen above, the gain errors vary between 0.1 (10x too low, i.e. worst case direction) and 
2.0 (2x too high). The majority of the model curves have been removed (zero GMULT values). 

At 16:00 we introduced this very substantial model mismatch. Let’s see what happens during the 
Aspen DMCplus operation below.
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Note how the Aspen DMCplus controller goes unstable, which isn’t surprising given the excessive 
level of model mismatch. The MV cycle grows exponentially until the MV LP targets hit the MV 
limits, then it settles into a constant amplitude cycle. The main source of instability is MV:FIC-2004, 
which has an LP target that flips between low and high limits every few minutes.

The next question is whether Adaptive Process Control can use a model this poor and remain 
stable and well-behaved, with small CV limit excursions. The same model mismatch is used in the 
subsequent simulation, and the mode is changed from “Adaptive” mode to “Aspen DMCplus” mode. 
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It is clear that the first 24 hours of the simulation shows Adaptive Process Control in action, the 
MV movements are benign and are not growing, and the active CV:AI:2021 just touched the CV low 
limit a few times with little overshoot. Once the application is switched back into Aspen DMCplus 
mode, the controller goes unstable and the LP target starts cycling badly. This simulation clearly 
demonstrates that Adaptive APC can handle extreme levels of model mismatch, far more than what 
a standard LP driven MPC formulation can tolerate.

Appendix III
How to Set the Adaptive Calibration Ratio
If we set the Adaptive Calibration Ratio to a small value, the switching controller will stay very 
close to the optimal constraint set, but the MV steps will get highly correlated with the unknown 
disturbance. This effect is called feedback correlation and is the main reason why the model ID fails 
in the presence of pure closed-loop data (with no external perturbations of any kind).

To make it hard, let’s use the large ramp/triangular disturbance we used before and tell the controller 
that the process gain is only 15% of what it really is (model mismatch of 6.7x, which is a very large 
gain error). 

Let’s consider a small ratio like 0.01 and see if we can identify the models.
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Note how the controller has to keep ramping the MV to prevent the CV from dropping below the CV 
low limit. This half of the cycle almost looks like pure closed-loop Aspen DMCplus control data (in 
fact it is slightly better than that, but not much). The second half of the cycle is made up of a series 
of larger step-like staircase moves. The CV stays very close to its LP target, but the MV takes on 
almost the exact shape of the triangular disturbance and is therefore strongly feedback correlated. 
The model ID results are shown on the left. Rather surprisingly, the new closed-loop version of the 
Subspace identification algorithm has managed to identify model curves that are within 20% of the 
correct gains. This is very impressive for such a short data set (and such a difficult disturbance).

Of course, if the disturbances are random and we collect multiple weeks of data, we will eventually 
identify a much more accurate model than shown here. The theory predicts that if the process is 
linear and if we reduce step size by 10x, we will get about the same model accuracy if we collect 
10x more data. With a Calibration Ratio this low (0.01), we cannot be sure we will get models of 
adequate accuracy, even if we collect months of data. Values this low is not recommended.

Note that the MV steps still need to be bigger than the stiction and hysteresis effects, otherwise 
these nonlinearities will dominate the data set and the model ID results will not be good.

The linearity is only approximately maintained if the step sizes aren’t larger so that the PID outputs 
will saturate every time, but still big enough so that the valve stiction and hysteresis effects are not 
dominant in the data set.

Of course, ratios around 0.05 to 0.15 would provide for the opportunity to make steps in opposite 
directions and increase signal-to-noise ratio. The model ID results improve even further and less data 
is then needed to converge the model matrix. If we use a ratio of 0.1, we get bigger steps and even 
better model ID results (see below).
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Note that the MV ramps still oppose the ramp-like disturbance, so there is still some feedback 
correlation in the data. However, compared to the previous example, the MVs do show direction 
changes, so some small steps are being made, breaking the correlation. This greatly reduces the 
feedback correlation and significantly improves the model ID results, as shown. We typically need 
one and a half to three weeks of data if we select a ratio of 0.1. This is the maximum allowed, which 
would result in the following shown below.

The Adaptive Process Control algorithm is still pushing the active constraints, but the signal-to-noise 
ratio has improved significantly. The model ID results are almost perfect, even though this is less 
than two days of test data.

At a ratio of 1.0, we can expect the strong models to converge in two to three days. The moderately 
strong models (also required) will take one to two weeks. The weak models can be ignored.
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