et aspentech Technology That Loves Complexity

Achieving Production Excellence with GDOT

Klas Dahlgren, GDOT Global Practice Director

The following slides have been modified for distribution

Presentation Overview

- GDOT introduction
 - GDOT Key to Unified Production Optimization
 - What is GDOT, Generic Dynamic Optimization Technology
 - Typical Benefits and Applications of GDOT in Refining
 - Diesel Case Study
 - Gasoline Optimization
- GDOT Software Overview

GDOT and Asset Optimization

GDOT – Key to Unified Production Optimization

Running to the Limits of Performance, Always

GDOT – Enabling Closed Loop Production Optimization

- Captures value by operating the refinery closer to plan
- Dynamically coordinates multiple units in closed loop ERP by automatically adjusting APCs Easily deployed and maintained by APC **Business Performance** Planning Management Execution Closed Loop Workflow Decision Engineers Support **Production Performance** Scheduling Management Over 25 implementations at 16 companies to date **GDOT-** Dynamic Optimization **Real-Time** Model Performance Closed Loop Update Workflow Monitoring Monitoring Improves Refinery Margin by \$0.25 - \$0.40/bbl **Advanced Process** Optimization Workflow Control \$15M – \$30M for a mid size refinery
- 5+ typical process areas to optimize per refinery

Running to the Limits of Performance – 24x7, minute-by-minute

DCS

What is GDOT?

- GDOT is a new generation of dynamic optimization technology that
 - aligns production planning with the actual operation of process units
 - successfully combines refinery planning models (like PIMS AO) with dynamic APC models (like DMC3)
 - uses patented dynamic data reconciliation & parameter estimation technology to maximize advantage of minute-by-minute process feedback
 - runs in a real time environment (typically every minute, just like APC controllers), but the scope of
 optimization is much larger
 - is designed to be maintained by site control engineers

GDOT Scope - Example of Middle Distillate Application

(aspentech

GDOT Applications and Typical Benefits (\$15M - \$30M per year)

- Naphtha Processing including Aromatics
- Middle Distillate Processing
- Residue Processing
- H2 Network Optimization
- Utility Optimization

Examples of audited achievements with petroleum refining applications include

Naphtha Processing	Distillate Processing	Residue Processing	H ₂ & Utility Systems
Increase aromatics yield by 5% & reduce gasoline quality giveaway	Increase diesel production by 10% and reduce quality giveaway	Increase conversion by 3% on feed	Reduce fuel gas & H2 losses by 50%+. Benefits are much higher if refinery is short on H2.
\$3M to \$5M+ / year	\$4M to \$10M / year	\$3M+ / year	\$1M to \$3M+ / year

Benefits Case Study: Valero Pembroke ULSD Optimizer (1)

- Benefits
 - 10% Improvement in ULSD production
 - \$10+ Million/year
- Application Brief
 - Coordinates CDUs/VDUs, HDS, and blending of Diesel & Jet fuel (8-10 APC Controllers)
- Application Objectives
 - Maximize Middle distillate production
 - Reduce off spec production
 - Minimize giveaways
 - HDS unit/catalyst optimization

Petroleum Technology Quarterly (PTQ) Magazine, issue: Q2 - 2011

Benefits Case Study: Valero Pembroke Publication (2)

Petroleum Technology Quarterly 2011 Q2

Modelling for ULSD optimisation

On-line coordination and optimisation of refinery process units led to a 10% increase in middle distillate production

KLAS DAHLGREN Apex Optimisation/Dynaproc AN RIGDEN Chevron HENRIK TERNDRUP Apex Optimisation

he Chevron Pembroke oil refinery is a complex and large (220 000 b/d) processing site. This case study examines the improvements achieved by a project with a high return on investment, which resulted in better operation of the process units involved in middle distillate production and components, which include kerosene, several straight-run gas oil streams and FCC product streams such as HHCN and light cycle gas oil (LCGO). The decision-making process for these blends involves several refinery areas and console operators in different control rooms across the site. Like many other ULSD-producing refineries, the Pembroke site blends middle distillates directly from the process unit rundown lines prior to hydrotreating. The main advantages of this approach, compared to a conventional batch blending system, are lower tank storage and manpower requirements, and the

Gasoline Optimization

Gasoline - Typical APC Deployment

GDOT Gasoline Optimization – Objectives and Typical Constraints

GDOT Software Overview

GDOT Application Structure

GDOT Product Components

Module	Functionality						
Offline Problem definition:							
Excel-based UI with function library	Build material balance and dynamic models, configure online applications						
On-line Calculation Server:							
GDOT DR	Real-time data reconciliation for unknown parameters and measurements in the model						
GDOT Optimizer	Calculate steady-state targets and communicate to controllers						
On-line Monitoring and Visualization:							
GDOT Console	Windows-based visualization tool for online application						
Web Visualizer	Web-based online visualization tool with flowsheet style graphic display						

GDOT Hybrid (Grey box) Models

GDOT Software Architecture

(aspentech

GDOT Web Viewer – Web-based End-User Interface to Monitor Optimization Results (View Only)

GDOT [®] WebViewer v2									
a		W (GDOT.REF_OPT.1/localhost)							
≣	T								
=	•								
	#	MV Name	Status	Current	Optimized	Low Limit	High Limit		
8	1	FC_10 - Crude Feed	GOOD	400	400	300	400	● HIGH	
⇒ →	2	TC_11 - Top	GOOD	126.429	126.429	120	140	• GOOD	
÷.	3	FC_12 - Kero	GOOD	72	72	20	80	• GOOD	
≠′	4	FC_13 - LGO	GOOD	82.748	82.748	40	100	• GOOD	
	5	FC_14 - HGO	GOOD	42.748	42.748	20	80	• GOOD	
۵	6	AX_10A - Crude TPB Slope	GOOD	5	5	5	5	● HILO	
»	7	AX_11A - Naphtha 95%	GOOD	150	150	150	1E+30	• LOW	
	8	AX_12A - Kero 95%	GOOD	240	240	-1E+30	240	● HIGH	
	9	AX_13A - LGO 95%	GOOD	343.436	343.436	-1E+30	350	• GOOD	
	10	AX_14A - HGO 95%	GOOD	396.871	396.871	-1E+30	400	• GOOD	
	11	FC_11 - Naphtha	GOOD	76	76	-1E+30	1E+30	• GOOD	
	12	FC_15 - Residue	GOOD	126.503	126.503	-1E+30	1E+30	• GOOD	
	13	AX_10B - Crude K factor	GOOD	12	12	12	12	● HILO	
	14	AX_12B - Kero density	GOOD	786.957	786.957	-1E+30	1E+30	• GOOD	
	15	AX_13B - LGO density	GOOD	837.835	837.835	-1E+30	1E+30	• GOOD	
	16	AX 14B - HGO densitv	GOOD	875.163	875.163	-1E+30	1E+30	GOOD	a 12

(aspentech

GDOT Web Visualizer – Web-based End-User Interface with Process Diagram Image and Live Data Display

GDOT DR "Plant Observer"

G NAP_OPT - GDOT (ENGINEER) - 59								_		\times		
File Vie	w Too	ols He	lp									
		STATI	STATUS : SOLUTION :		OFF			ON Advisory				
CV VIEW MV VIEW		OBJ FUNC	OPT DETAIL CONNECT AP			P						
м	IV Links	;	MV Status/Control	MV Input Process					_			
		MV Na	ame		Status	Cur	rent	Optimized	Low Limit	High Limit		
74	OFF	X.3.7	- iC6MP in T301 btm		OFF	0	.000	0.000				
75	OFF	X.3.8 - nC6P in T301 btm			OFF	0	.007	0.007				
76	ON	X.3.9 - C6N in T301 btm			GOOD	0	.426	0.426				
77	ON	X.3.10 - Benzene in T301 btm			GOOD	0	.169	0.169				
78	ON	X.3.11 - iC7P in T301 btm			GOOD	21	.659	21.659				
79	ON	X.3.12 - nC7P in T301 btm			GOOD	4	.196	4.196				
80	ON	X.3.13	K.3.13 - C7N in T301 btm			10	.679	10.679				
81	ON	X.3.14	- C7A in T301 btm		GOOD	7	.989	7.989				
82	ON	X.3.15	5 - C8P in T301 btm		GOOD	12	.422	12.422				
83	ON	X.3.16	5 - C8N in T301 btm		GOOD	6	.803	6.803				
84 (ON	X.3.17	K.3.17 - C8A in T301 btm			16	.274	16.274				
85	ON	X.3.18	.3.18 - C9+P in T301 btm			1	3.22	13.22				
86	ON	X.3.19	- C9+N in T301 btm	GOOD	4	.109	4.109					
87	ON	X.3.20	.3.20 - C9+A in T301 btm			2	.047	2.047				
88	OFF	STRM	5TRM.1 - T301 feed			10	86.7	1086.7				
89	ON	STRM	STRM.2 - T301 top			56	3.15	563.15				
90	ON	STRM.3 - T301 bottom			GOOD	53	3.49	533.49				
91 (ON	T301.REFL - T301 reflux			GOOD	78	6.59	786.59				
92 (ON	T301.	VOI - V/L ratio		GOOD	1	.525	1.525			•	Ľ

Ready

(m) aspentech