

# REAL TIME CALCULATION AND CLOSED-LOOP CONTROL OF DEWPOINT AND SALT DEPOSITION TEMPERATURE AT A CDU, USING AN ONLINE ANALYZER

Dr Sebastien Osta APC Specialist TOTAL Petrochemicals & Refining

<u>Co-authors:</u> Daniel Bonells – Process Specialist – TOTAL Marce James – Crude Complex Support Engineer – TOTAL Xavier Roumeau – Corrosion Specialist – TOTAL Robby Tietz – District Representative – NALCO Champion, an Ecolab company

#### AGENDA

# • Challenge

# Our solution

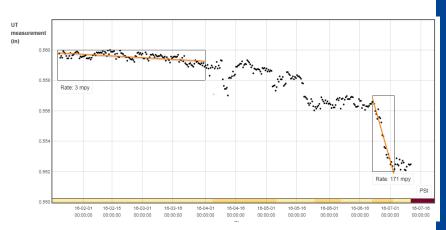
- Analyzer
- Offline/online Calculations
- Closed-loop Control

# Conclusion



### PROBLEM

 Inspection found that active corrosion is taking place at the CDU Naphtha pump-around circuit








#### **CORROSION MECHANISM**

- The corrosion mechanism involved here is "amine salts" (amines + HCI)
- Amines are very difficult to predict / monitor and have multiples sources (crude, slops, Sour Water Stripper)
- An amine oil/water separation will occur in the desalters depending on the pH of wash water and brine
- Formation of an acidic under-deposit corrosion (salts + corrosion products) on the exchanger bundles will continue till the deposits are washed away



Example of the corrosion probe monitoring showing accelerated pipe corrosion (decreased thickness)



### **TYPICAL WORK PROCESS**

The Chemical Vendor, 3 times per week:

- Measures (among other things) Chloride and Ammonium concentrations in water – They may also measure Amines (MEA, DEA, …)
- Estimates dewpoint temperature and salt deposition temperatures (ammonium chloride & amine) using proprietary software
- Recommends the higher of the dewpoint and salt deposition temperatures, after adding a margin (NACE recommendation is 25 degF)
- Operations are then expected to respect that minimum recommended temperature by adjusting the overhead temperature of the CDU

| Sour Water Analysis |       |       |       |  |  |  |  |  |
|---------------------|-------|-------|-------|--|--|--|--|--|
|                     | V4 V5 |       |       |  |  |  |  |  |
| pН                  | 6.1   | 6.8   |       |  |  |  |  |  |
| Chloride            | 17.4  | 0.6   | ppm   |  |  |  |  |  |
| Iron                | 0.00  | 0.00  | ppm   |  |  |  |  |  |
| Ammonia             | 65.0  | 23    | ppm   |  |  |  |  |  |
| Strong Acid         | 2.2   | 0.586 | meq/L |  |  |  |  |  |
| Weak Acid           | 1.7   | 2.121 |       |  |  |  |  |  |
| Sulfide             | 15.0  | 50    | ppm   |  |  |  |  |  |

|                            | Calc'd Salt P | oints   |
|----------------------------|---------------|---------|
| DewPoint                   | 220.0         | Deg F   |
| DewPoint pH                | 2.5           |         |
| Neutralizer Demand         | 20.0          | Gal/Day |
| NH4CI Salt                 | 236.0         | Deg F   |
| Amine Salt                 | 167.0         | Deg F   |
| Salt Deposition Potential  | 0.0           | Lb/Day  |
| OH Temperature             | 265.0         | Deg F   |
| Total Recommended OH Temp. | 271.0         | Deg F   |



### CHALLENGE

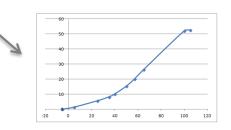
- What happens if the wash water composition, the process conditions or the crude composition change, in between lab analyses every couple of days?
- Is it feasible to calculate dewpoint and salt deposition temperatures in real time?
- TOTAL's corporate calculation standard explains that there are 2 methods for calculating dewpoint and salt deposition temperatures:
  - The simplified method
  - The 'iterative' method, which accounts for partial condensation of hydrocarbons, and therefore is more accurate
    - As one lowers the overhead temperature towards dewpoint, heavy hydrocarbons will condense
    - As less hydrocarbons are present in the vapor phase, the partial pressure of water will increase, so the dewpoint will increase



# THE ONLINE ANALYZER

- 3D TRASAR<sup>™</sup> Technology for Crude Overhead Systems (3DTCOS) is patented technology that measures pH, CI, NH<sub>3</sub>, and Fe
- Delivers near real-time overhead corrosion control, connected to the DCS (with alarming capability)
- The analyzer is often used to control neutralizer, filmer, and caustic injection
- The output is also used in some locations to adjust tower top temps to avoid potential ammonium chloride salting events and/or increase distillate/jet yields



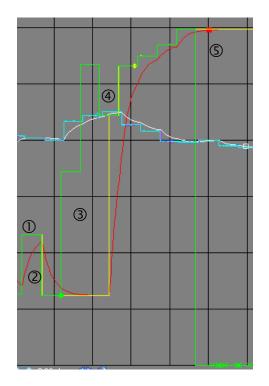

3DTCOS - front (left) / back (right)



### **CALCULATIONS IN EXCEL**

- Standard Inputs: Pressure and Flows
- Flow measurements can sometimes be an issue. The fix can be to build a correlation between valve output and flow
- Anything unmeasured ? Make a reasonable and conservative assumption
- Use consistent units (i.e. SI ☺)
- Document the conversion factors

| Overhead Pressure    | BPR875    | 20.82 | PSI  | 1.44  | Bar  |
|----------------------|-----------|-------|------|-------|------|
|                      |           |       |      | 2.44  | Bara |
| Reflux               | BFC837.OP | 37.59 | %    |       |      |
| Estimated Reflux     |           | 9.18  | KBPD | 60.84 | М3/Н |
|                      |           |       |      | 44.41 | т/н  |
| Water flow           | 02FI871   | 59.68 | GPM  | 13.55 | т/н  |
|                      | 02FI870   | 17.24 | GPM  | 3.91  | т/н  |
| Est. water in Reflux |           | 2     | %    | 0.89  | т/н  |
| Total water          |           |       |      | 18.36 | т/н  |




|   | 1 LB             | 0.4535925 | KG    |
|---|------------------|-----------|-------|
|   | 1 B              | 158.9873  | L     |
| 3 | 1 FT3            | 0.0283167 | M3    |
|   | 1 G              | 3.7854099 | L     |
|   | 1 SCF            | 0.002641  | Ibmol |
|   | API = (141.5 / S |           |       |



# **ANALYZER VALIDATION**

- Analyzers are special inputs
- Must be validated in real time, for:
  - Validity range
  - Freeze detection
  - Spikes
- Add filtering to avoid staircase effect



- ① Signal is valid Raw and
   Validated measurements are superposed
- ② Filtered measurement lags the validated signal
- ③ Signal exceeds the rate of change limit, so Validated keeps the 'last good value'
- But in fact the process has shifted, so the **Raw** and Validated measurements do superpose again
- S Analyzer fails and goes out of domain, so Validated keeps the 'last good value'



#### WATER BALANCE

- 2 Cases: 'Water OUT' or 'Water IN'
- Water OUT requires flow measurements for water out of the overhead drums
- Water IN uses instruments for stripping steam, typically underestimates water in crude, and relies on 3 analyses per week for % water in crude

|                       |               |        |       |        | - 4 - |        |
|-----------------------|---------------|--------|-------|--------|-------|--------|
| Steam Flows           | BFFC832       | 1.44   | MLB/H | 0.65   | т/н   | Kero   |
|                       | BFC828        | 2.00   | MLB/H | 0.91   | т/н   | FO     |
|                       | BFC829        | 1.44   | MLB/H | 0.65   | т/н   | AGO    |
|                       | BFC822        | 12.69  | MLB/H | 5.75   | т/н   | Bottom |
| Total stripping steam |               |        |       | 7.97   | т/н   |        |
| Crude density online  | 02DX2840.PV   | 21.21  | API   | 0.93   | т/мз  |        |
| Crude density Lab     | B070T044.01   | 21.50  | API   | 0.92   | т/м4  |        |
| Crude density         | 02HS2822.PV   | RUN    |       | 0.93   |       |        |
| Crude Flow            | BFC800        | 149.31 | KBPD  | 989.13 | М3/Н  |        |
|                       |               |        |       | 916.53 | т/н   |        |
| Water content         | 02-T035.VNDR1 | 0.60%  | %VOL  |        |       |        |
| Water in crude        |               | 0.90   | KBPD  | 5.50   | т/н   |        |
|                       |               |        |       |        |       |        |
| Total water           |               |        |       | 13.47  | T/H   |        |

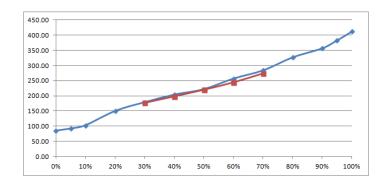
| 02FI871 | 59.68 | GPM           | 13.55 | т/н                                | V-4                        |
|---------|-------|---------------|-------|------------------------------------|----------------------------|
| 02FI870 | 17.24 | GPM           | 3.91  | т/н                                | V-5                        |
|         | 2     | %             | 0.89  | т/н                                | Reflux                     |
|         |       |               | 18.36 | Т/Н                                |                            |
|         |       | 02FI870 17.24 |       | 02FI870 17.24 GPM 3.91<br>2 % 0.89 | 02FI870 17.24 GPM 3.91 T/H |

Water OUT



Water IN

### SIMPLIFIED METHOD


- Calculates partial pressure of NH<sub>3</sub>, HCI and H<sub>2</sub>O, based on mass balance and total overhead pressure
- Calculates NH<sub>4</sub>Cl salt deposition and dewpoint temperatures from Antoine equations
- Adds 35 degF to the higher of the 2 temperatures

| PpNH3       |       |        | 5.69E-05 | Bara |  |
|-------------|-------|--------|----------|------|--|
| PpHCL       |       |        | 1.42E-05 | Bara |  |
| Кр          |       |        | 8.09E-10 |      |  |
| T NH4CL     | 239.3 | degF   | 115.0    | degC |  |
| PpH2O       |       |        | 0.88     | Bara |  |
| T H2O       | 204.9 | degF   | 96.0     | degC |  |
| Recommended | 274.: | l degF |          |      |  |



# **ITERATIVE METHOD**

- Uses Hot Drum Naphtha TBP curve (inferential, with bias update from the lab)
- Assumes a starting value for the dewpoint temperature
- Calculates the fraction of evaporated hydrocarbons if the overhead temperature were at dewpoint



| 02XI1T30I | 30% | 176.76 | 2 | 198    | 40%              |  |
|-----------|-----|--------|---|--------|------------------|--|
|           | 40% | 197.97 |   | 220    | 50%              |  |
|           | 50% | 219.53 |   | a      | 0.0046           |  |
|           | 60% | 243.89 |   | b      | -0.5184          |  |
| 02XI1T70I | 70% | 272.92 |   | % evap | 45.9%            |  |
|           |     |        |   |        | $\left( \right)$ |  |
|           |     |        |   | IBP    | 75               |  |

Lab TBP
Inferred TBP



# **ITERATIVE METHOD (CON'T)**

- Calculates partial pressures from the new mass balance that accounts for condensed heavy hydrocarbons
- Calculates NH<sub>4</sub>Cl salt deposition and dewpoint temperatures
- Loops until initial and final dewpoint temperatures are identical (DT=0)
- Adds 25 degF to the higher of the 2 temperatures

| T guess           |             | 210.64 | degF | 99.24    | degC |
|-------------------|-------------|--------|------|----------|------|
| FHCVAP (hot drum) | at dewpoint |        |      | 32.70    | т/н  |
| NBP               | at dewpoint | 142.82 | degF | 61.57    | degC |
| MW                | at dewpoint |        |      | 82.44    |      |
| PpH2O             | at %cond HC |        |      | 0.99     | Bara |
| T H2O             |             | 210.7  | degF | 99.3     | degC |
| DT                |             |        |      | 0.0      | degC |
| PpNH3             |             |        |      | 6.39E-05 | Bara |
| PpHCL             |             |        |      | 1.60E-05 | Bara |
| Кр                |             |        |      | 1.02E-09 |      |
| T NH4CL           |             | 242.1  | degF | 116.7    | degC |
| Recommended       |             | 267.1  | degF |          |      |

The iterative methods may lead to a higher estimated dewpoint, but TOTAL allows a reduced margin (25 vs. 35 degF) due to increased accuracy in the calculations



# **ONLINE CALCULATIONS**

- In our case, online calculations are implemented using Aspen IQ, and are 'identical' to Excel
- All input variables are validated for BAD values, and critical variables are validated for range (e.g. water flows)
- But for each validation, we need to think about what we should do in case one input is found invalid. Because by default the rest of the calculations will become invalid as well

```
'OVHD Pressure (Bara)

P = P1875 * 0.0689475 + 1.0

'Water produced from V-4 and V-5 drums (T/H)

WATDRUM = (F1870V + F1871V) * 60 * 3.78541 / 1000.

'Water in Reflux (T/H)

REF = FC837*158.9873/24*D_HD

WATREF = REF * H20_REF/100

'Stripping Water (T/H)

STST = (FFC832+FC828+FC829+FC822) * 0.4535925

'Water in Crude (T/H)

If P208D = 1 Then API_CR = DX2840V

Else API_CR = API_LAB

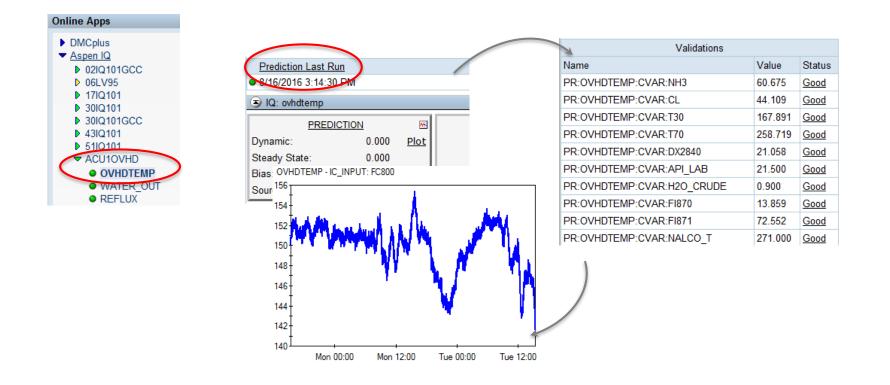
Endif

D_CR = 141.5/(API_CR+131.5)

CRWAT = (FC800*D_CR)*158.9873/24.0*H20_CRUDEV/100
```



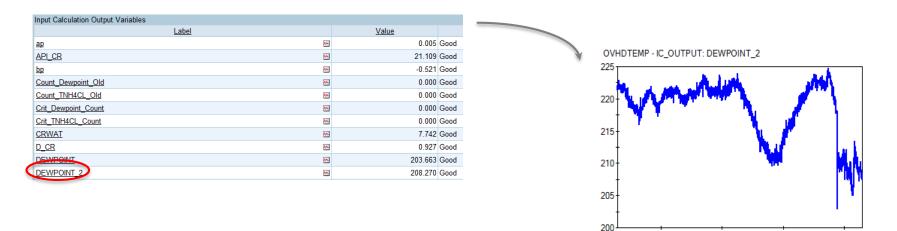
#### WATER IN VS WATER OUT


- Since we also calculate Water IN, we can use that value to infer Water OUT, and apply a bias calculated in real time
- So in case one of the water flows would be flagged invalid, we automatically use Water IN + bias instead

| Dynamic:<br>Steady Sta<br>Bias:<br>Source:<br><u>Plot</u> | Analyzer A                     | ₩<br>22.161<br>22.611<br>3.729<br>malyzer | Value:<br>Time:<br>Bias:<br>Status:<br><u>Plot</u> |                                        | M      | INPUT CALCU<br>Operate | LATION       |                   |               |            |
|-----------------------------------------------------------|--------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------|--------|------------------------|--------------|-------------------|---------------|------------|
| Operate<br>Transform                                      | <u>Tuning Model</u><br>n       |                                           | Operat<br>BiasCal                                  | <u>e Tuning Validation</u><br><u>c</u> |        |                        |              |                   |               |            |
| Prediction I<br>WATER_O                                   | Plot<br>IUT - Prediction (T/H) | )                                         |                                                    |                                        |        |                        | ✓ Auto-scale |                   | Legend        |            |
|                                                           | Sun 18:00                      | Mon (                                     | )0:00                                              | Mon 06:00                              | }<br>~ | Mon 12:00              | Mon 18:00    | t<br>Tue 00:00    | Tue 06:00     | ~~~~~~     |
| -10 <sup>±</sup>                                          |                                |                                           |                                                    |                                        |        |                        |              |                   |               |            |
| Detail                                                    | S Detail Last 5 ❤ samples      |                                           |                                                    |                                        |        |                        |              |                   |               |            |
| -                                                         | Previous Samples               |                                           |                                                    |                                        |        |                        |              |                   |               |            |
|                                                           | Update Time                    | R                                         | aw Value                                           | Unbiased Pred                          | _      | Biased Pred            | Avg Analyzer | Avg Unbiased Pred | Analyzer Bias | <u>Cor</u> |
|                                                           | 3:02:45 PM                     |                                           | 22.2                                               |                                        |        | 22.098                 | 22.173       | 18.444            |               | Good       |
|                                                           | 3:01:45 PM                     |                                           | 22.2                                               |                                        |        | 21.987                 | 22.055       | 18.420            |               | Good       |
| 8/16/2016                                                 | 3:00:45 PM                     |                                           | 22.0                                               | 65 18.433                              |        | 22.051                 | 21.949       | 18.396            | 3.553         | Good       |



# **INPUT VALIDATION AND TRENDS**


- Both simplified and iterative methods are calculated online
- All inputs, validations, constants, intermediate calculations and final results are visible in the AspenTech Web Interface





### **CALCULATION RESULTS**

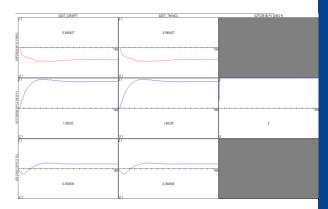
Below are example of intermediate calculations and final results



- Results are written out to the DCS (once per minute)
- And made available in PHD and PI databases



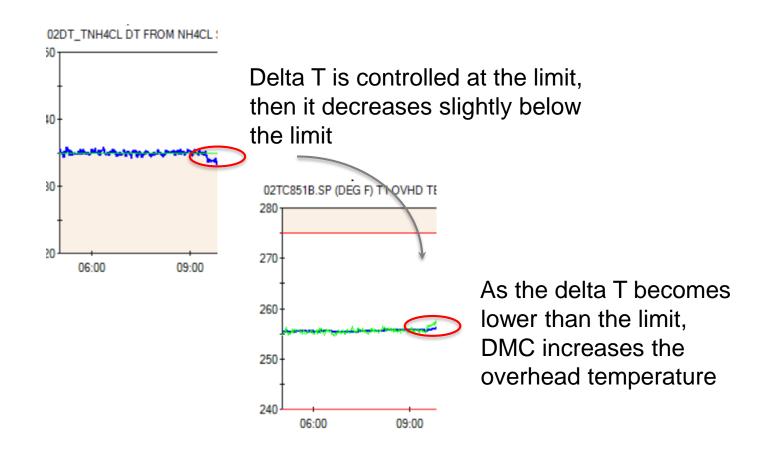
Mon 00:00


Mon 12:00

Tue 00:00

Tue 12:00

# **ONLINE CONTROL**


- In our case control is using Aspen DMCplus
- Inspection, Process Support, Operations and APC have agreed upon:
  - Controlling delta temperature from dewpoint and NH<sub>4</sub>Cl deposition temperatures
  - Using the NALCO Champion minimum recommended temperature as a back-up in case the online analyzer would fail
- DMCplus models have been updated to include 3 new Controlled Variables, in the form of delta T from dewpoint, delta T from NH<sub>4</sub>Cl, and NALCO Champion minimum temperature



| <b>7</b> Pressure | DT's ענ         |
|-------------------|-----------------|
| オ Temperature     | <b>オオオ</b> DT's |
| オ Reflux          | <b>←→</b> DT's  |



# **CONTROL IN ACTION**





### FALL BACK MECHANISM

- What happens when the online analyzer fails or is flagged invalid, since we estimated that it is the highest risk of failure in the corrosion calculation sequence ?
  - We know that if the real-time validation of the online analyzer fails, the signal may become valid again a couple of hours later, depending on the type of validity check that didn't pass
  - So we start a counter immediately after the analyzer is found invalid
  - When the counter starts, DMCplus works using its internal predictions, without accounting for any new reading of the DT value from the DCS
  - If the counter reaches a maximum value of 4 hours, then the Controller Variable for DT NH<sub>4</sub>CL turns OFF automatically
  - At the same time the minimum NALCO Champion recommended temperature Controller Variable turns ON automatically, and acts as a backup



# CONCLUSION

- TOTAL Process Support, Inspection and APC have worked together to define the objectives and the constraints, and implement the calculations in Excel and online, with support from Operations, DCS and NALCO Champion
- Leveraging the use of an asset the NALCO Champion online analyzer – as well as the strong incentive to minimize CDU overhead temperature – were the triggers for this project
- Making the closed-loop application robust, through the real-time validation of key inputs, is considered a best practice for APC
- Another analyzer for monitoring water in crude might be beneficial if ever the dewpoint constraint would become predominant
- At TOTAL PAR an acidification kit has been installed in 2017 to minimize amines in oil



### **BENEFITS**

- Since the implementation of this application on 6/1/2016, the NH<sub>4</sub>Cl salt deposition temperature has been in control for 93% of the time (control outages due to analyzer maintenance requirement and MVPC turned off at times)
- The main benefit of the approach is the control in real-time of the corrosion mechanism, and the expectation of an increased run-length of various process equipments
- Another significant benefit is the reduction of CDU overhead temperature (~ \$ 2–9MM estimated benefits per year, as the combined result of acidification, online analyzers and real-time control)



# **QUESTIONS**?

