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Outline

1. What is collinearity ?
2. What makes a system collinear ?
3. How does a near collinear controller behave ?
4. How does a perfect collinear controller behave ?
5. How does an uncollinear controller behave ?
6. When should we expect collinearities in :

« Heat exchange

* Refrigeration

 Distillation
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What is Collinearity ?

(@AVA CV2
MV1 a b
MV2 C d

G = 2x2 matrix of steady state gains

G is "collinear” when the terms are in perfect ratio : a/c = b/d
Collinear also known as linearly dependent, parallel, singular

For collinear G, there is no SS solution for AMVs to satisfy all ACVs
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What is a Near Collinearity ?

(@AVA CV2
MV1 a b
MV2 C d

Near Collinear also known as ill conditioned

G is "nearly collinear” when the ratios are almost equal : a/c = b/d

For near collinear G, the SS solution for AMVs is sensitive to noise in CVs
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What makes a System Collinear ?

MVl;E E CV1i

MV2—— g CV2

Convolution through FlI
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Collinearity from Convolution

Gl > Gz
MV2 — — > CV?2
Model for Model for
Column #1 Column #2
MV] —— CV1
G = G,xG,
MV2 CV2

Convolution

Overall Process model G is COLLINEAR !
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Collinearity from State Space

State space model, no direct D term :
xX’=Ax + Bu
y = CX

If C is linear dependent , the overall process model G is COLLINEAR !
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Collinear Controller, Collinear Process

Stable MVs
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Give up ONE CV
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Near Collinear Controller, Collinear Process
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Erratic SS solution ! Same Noise on CVs as before
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Uncollinear Controller, Collinear Process
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MV ramping CV targets never reached
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Collinearity Metrics : Condition & RGA Numbers

Perfectly
Collinear
Cond # =~
RGA# =

_m
< Force uncollinear ]
S —

[ Force collinear >
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Gain Fixing

. -

CV1i CVv2
MV1 | -2.45 1.69
MV2 | 17.18 | -14.57

< Force uncollinear :I

RGA# =5, Cond #=19
UNCOLLINEAR

— -

L

Force collinea

>

-

-2.23

1.88

CV1 CV2
MV1 -2.23 1.88
MV2 | 16.948 | -14.288

MV2

16.92

-14.3

RGA# =400, Cond # = 1600

Raw identified matrix

NEAR COLLINEAR

RGA# = Cond# =
PERFECT COLLINEAR
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Example 1 : Heat Exchanger
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Heat Exchanger, Constant U

-U,A constant—

GAIN MATRIX GAALT TN (®) CW valve (%)
Process flow (t/h) -3.75 7.35
Process temp (C) 9.00 -17.64

Determinant = -3.75%-17.64 — 7.35%9.00 = 0
System is COLLINEAR
When fouled, must give up on ONE CV (e.g. CW temp)
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Heat Exchanger, Variable U

A constant
Ua Fo8

GAIN MATRIX GANALT TN (@) CW valve (%)
Process flow (t/h) -0.1 0.99

Process temp (C) 0.35 -2.37

RGA# = 2.2, Condition # = 10.0
System is NOT COLLINEAR
For clean exchanger, both CVs can be met simultaneously
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Example 2 : Refrigeration

Process OUT +— .

o i ..... @ CV2
MVl DQQA Liquid Refrigerant

Process IN =DQQ
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Refrigeration TC/LC Cascade

@ ............... :
-
| e
X
©
%
GAIN MATRIX Refrig valve (%) Return valve (%)
Process flow (t/h) 9.1 16.12
Process temp (C) -1.75 -3.1

Determinant = 9.1x-3.1 — 16.12x-1.75=0
System is COLLINEAR
Duty increase prohibited after ONE valve hits constraint
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Refrigeration TC/PC Cascade

GAIN MATRIX
Process flow (t/h)

Refrig valve (%) Return valve (%)

-21.9

19.9

Process temp (C)

11.8

4.7

RGA# = 0.8, Condition # =4.9
System is NOT COLLINEAR

Duty can be maximised by operating both valves at constraint
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Example 3 : C3/C4 Splitter @ @

MV1 |
| | —
o cv1

: C4 mol%

20 t/h 24 trays
50 mol% C3 @ !

50 mol% C4 @
\H
] 4 g C3 mol%

»
|
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Splitter with High RR

/J\ »0.1 mol% C4

Reflux rate = 77 t/h

\ 4

Steam rate = 11.4 t/h

{]

»0.1 mol% C3
GAIN MATRIX C4in OH (mol%) C3in bottom (mol%)
Reflux rate (t/h) -2.23 1.88
Steam rate (t/h) 16.92 -14.288

Determinant = -2.23%-14.288 — 1.88x16.92 =0
System is COLLINEAR
Only one quality spec can met
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Splitter with Low RR

/J\ > 5 mol% C4

Reflux rate = 16.7 t/h

\ 4

Steam rate = 3.4 t/h

{]

» 5 mol% C3
GAIN MATRIX C4in OH (mol %) C3in bottom (mol %)
Reflux rate (t/h) -3.5 3.4
Steam rate (t/h) 18.4 -33.8

RGA# = 2.1, Condition # =6.2
System is NOT COLLINEAR
Specs on both top and bottom quality can be met simultaneously
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Splitter with TC

XX
ey
IR

o

- ¥

GAIN MATRIX C4in OH (mol%) C3in bottom (mol%)
Temperature (C) +a -b
Reboil duty (kW) -C -d

Determinant = (+ax-d) — (-bx-c) # 0
System is NEVER COLLINEAR
Temperature + fractionation MVs circumvent the collinearity dilemma !
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Conclusions

A collinear system is one with equal gain ratios

MIMO models generated by convolution are collinear

Condition # and RGA # measure proximity to collinearity

A near collinear controller gives erratic closed loop behaviour

A collinear controller on an uncollinear process will give up on a constraint
An uncollinear controller on a collinear process will ramp MVs to saturation
The collinearity property of a process can change depending on :

* Process conditions e.g. fouling in heat exchangers

« Operating point e.g. Reflux ratio in distillation

« Base layer controls e.g. TC slave in refrigeration

8. Temperature + fractionation MVs circumvent the collinearity dilemma

NOo ook obdE

24 | E BOREALIS



Thank you

A project by Borealis AG. The idea
this presentation are the sole prc
and are subject to current
Unauthorized use, reprod




