When a Near Collinearity Should and Should not be made Perfect

Nicholas Alsop Senior Group Expert BOREALIS AB Stenungsund Sweden

Keep Discovering

What we don't like....

Outline

- 1. What is collinearity ?
- 2. What makes a system collinear ?
- 3. How does a near collinear controller behave ?
- 4. How does a perfect collinear controller behave ?
- 5. How does an uncollinear controller behave ?
- 6. When should we expect collinearities in :
 - Heat exchange
 - Refrigeration
 - Distillation

What is Collinearity ?

	CV1	CV2
MV1	а	b
MV2	С	d

G = 2x2 matrix of steady state gains

G is "collinear" when the terms are in perfect ratio : a/c = b/d

Collinear also known as linearly dependent, parallel, singular

For collinear G, there is no SS solution for Δ MVs to satisfy all Δ CVs

What is a Near Collinearity ?

	CV1	CV2
MV1	а	b
MV2	С	d

G is "nearly collinear" when the ratios are almost equal : $a/c \approx b/d$

Near Collinear also known as ill conditioned

For near collinear G, the SS solution for Δ MVs is sensitive to noise in CVs

What makes a System Collinear ?

Collinearity from Convolution

Convolution

Overall Process model G is COLLINEAR !

Collinearity from State Space

State space model, no direct D term : x' = Ax + Buy = Cx

If **C** is linear dependent , the overall process model **G** is COLLINEAR !

Collinear Controller, Collinear Process

Near Collinear Controller, Collinear Process

Uncollinear Controller, Collinear Process

Collinearity Metrics : Condition & RGA Numbers

Gain Fixing

Raw identified matrix RGA # = 400, Cond # = 1600 NEAR COLLINEAR

Example 1 : Heat Exchanger

Heat Exchanger, Constant U

GAIN MATRIX	CW temp (C)	CW valve (%)
Process flow (t/h)	-3.75	7.35
Process temp (C)	9.00	-17.64

Determinant = -3.75×-17.64 – 7.35×9.00 = 0 System is COLLINEAR When fouled, must give up on ONE CV (e.g. CW temp)

Heat Exchanger, Variable U

GAIN MATRIX	CW temp (C)	CW valve (%)
Process flow (t/h)	-0.1	0.99
Process temp (C)	0.35	-2.37

RGA # = 2.2, Condition # = 10.0 System is NOT COLLINEAR For clean exchanger, both CVs can be met simultaneously

Example 2 : Refrigeration

Refrigeration TC/LC Cascade

GAIN MATRIX	Refrig valve (%)	Return valve (%)
Process flow (t/h)	9.1	16.12
Process temp (C)	-1.75	-3.1

Determinant = $9.1 \times 3.1 - 16.12 \times 1.75 = 0$ System is COLLINEAR Duty increase prohibited after ONE valve hits constraint

Refrigeration TC/PC Cascade

GAIN MATRIX	Refrig valve (%)	Return valve (%)
Process flow (t/h)	-21.9	19.9
Process temp (C)	11.8	-4.7

RGA # = 0.8, Condition # = 4.9 System is NOT COLLINEAR Duty can be maximised by operating both valves at constraint

Splitter with High RR

Determinant = -2.23×-14.288 – 1.88×16.92 = 0 System is COLLINEAR Only one quality spec can met

Splitter with Low RR

RGA # = 2.1, Condition # = 6.2 System is NOT COLLINEAR

Specs on both top and bottom quality can be met simultaneously

Splitter with TC

GAIN MATRIX	C4 in OH (mol%)	C3 in bottom (mol%)
Temperature (C)	+a	-b
Reboil duty (kW)	-C	-d

Determinant = $(+a \times -d) - (-b \times -c) \neq 0$ System is NEVER COLLINEAR

Temperature + fractionation MVs circumvent the collinearity dilemma !

Conclusions

- 1. A collinear system is one with equal gain ratios
- 2. MIMO models generated by convolution are collinear
- 3. Condition # and RGA # measure proximity to collinearity
- 4. A near collinear controller gives erratic closed loop behaviour
- 5. A collinear controller on an uncollinear process will give up on a constraint
- 6. An uncollinear controller on a collinear process will ramp MVs to saturation
- 7. The collinearity property of a process can change depending on :
 - Process conditions e.g. fouling in heat exchangers
 - Operating point e.g. Reflux ratio in distillation
 - Base layer controls e.g. TC slave in refrigeration
- 8. Temperature + fractionation MVs circumvent the collinearity dilemma

Thank you

A project by Borealis AG. The ideas documented in this presentation are the sole property of Borealis AG, and are subject to current copyright laws. Unauthorized use, reproduction in whole or in part, as well as transmission to third parties is not permitted.

