

(aspentech Technology That Loves Complexity

GDOT Applications at Valero's Pembroke Refinery

An Rigden, Process Control Manager, Valero Pembroke Refinery

Presentation Overview

- Introduction to Valero Pembroke Refinery
- GDOT Program at Valero Pembroke Refinery
- ULSD Maximization Case Study
- CDU Heat Balance Optimization Case Study

Valero Pembroke Introduction

- Pembroke refinery opened in 1964
- Crude capacity of 220,000 BPD
- Approximately 600 employees and 400 term contractors
- Valero acquired the Pembroke Refinery in southwest Wales in 2011

GDOT Optimiser Program at Pembroke Refinery

- ULSD_OPT (2006)
 - CDU, VDU, VBU, HTU1, HTU2 and part of FCCU
- NAP_OPT (2009)
 - CDU, Unifiner, CCR, Benzene column, ISOM (added 2010)
 - Partial gasoline blending to be added
- UTIL_OPT (2010)
 - Fuel gas/oil system, 7 boilers, LP MP and HP steam.
- HYDROISOM_OPT, (2011)
 - Small nonlinear reactor optimiser
- FCCU_OPT, (2013)
 - Main fractionator commissioned first, feed optimisation ready after DCS migration
- ALKY_OPT (2014)
 - Model completed, to be commissioned after DCS migration
- H2_OPT
 - Feasibility study completed

Pembroke ULSD Optimization Project

- Consistently maintain high ULSD (and gasoil) production rates.
- Reduce off spec diesel production
- Minimize giveaway
- Optimize towards HVP from the crude oil
- HDS unit/catalyst optimization
- Improve energy efficiency

Petroleum Technology Quarterly 2011 Q2

Modelling for ULSD optimisation

On-line coordination and optimisation of refinery process units led to a 10% increase in middle distillate production

KLAS DAHLGREN Apex Optimisation/Dynaproc AN RIGDEN Chevron HENRIK TERNDRUP Apex Optimisation

The Chevron Pembroke oil refinery is a complex and large (220 000 b/d) processing site. This case study examines the improvements achieved by a project with a high return on investment, which resulted in better operation of the process units involved in middle distillate production and higher with a hey orderer.

components, which include kerosene, several straight-run gas oil streams and FCC product streams such as HHCN and light cycle gas oil (LCGO). The decision-making process for these blends involves several refinery areas and console operators in different control rooms across the site. Like many other ULSD-producing refineries, the Pembroke site blends middle distillates directly from the process unit rundown lines prior to hydrotreating. The main advantages of this approach, compared to a conventional batch blending system, are lower tank storage and manpower requirements, and the

Pembroke Diesel System

DMCplus with GDOT for Operators

CHARTE HISTORY	Overview Face	plates Operations Engineering Me	ssages !	Model Calcul	ations Pl	ots Mar	nage								
iline Apps	DMCplus: CDI	U1 (pernntcdmc01): All Variables	: Operati	ions									24/09/	/2009 13	:38:5
IQ Applications	Mat	ter ON/OFF Switch	ET	Last Run Tin	ne		Las	t Load			W	/hyoff Mess	age		
▼ CDU1	ON	ON ON ON 24/09/2009 13:38:20 02/09/2009 07:19:04							19:04						
All Variables	See														
Independents Dependents	Name	Description	Critical Switch	Combined Status	Oper Srv Switch	Loop Status	Current Value	<u>Lower</u> Limit	<u>SS</u> Target	<u>Upper</u> Limit	Current Move	<u>External</u> <u>Target</u>	ET_Srv Switch	ET Status	<u>Ter</u> Swit
CDU3	<u>1PC_220.SP</u> ₪	MV01 - 105 PRESSURE	N	EXT TARG	ON	M∨	1.361	1.320	1.357	1.650	-0.000	1.357	ON	GOOD	
CDU4	<u>1TC186R.SP</u> ₪	MV02 - 1C1 TOP PCT	Y	EXT TARG	ON	M∨	116.819	114.500	115.975	128.000	-0.024	115.975	ON	GOOD	
VBU1	1FC_2132.SP	MV03 - KERO TO MEROX	N	< ET LOW	ON	M∨	180.494	90.000	181.165	207.000	0.012	194.409	ON	GOOD	
VBU2	<u>1F13R.SP</u>	MV04 - KERO TO TANKAGE	N	AWS LO	ON	M∨	25.397	15.000	25.397	160.000	0.000	15.000	ON	GOOD	
VDU1	<u>1FC185R.SP</u> ₪	MV05 - TOP REFLUX FLOW	N	EXT TARG	ON	M∨	136.793	120.000	135.458	175.000	-0.041	135.457	ON	GOOD	Help
ALKY	1FC2889.SP	MV06 - TPA FLOW B/P 1EA15 & 1E53	N	DCS LOC	ON	FF	25.000	60.000	25.000	400.000	0.000	25.000	ON	READY	
BUTAMER	1FC2890.SP	MV07 - TPA TO 1E53	N	HI LIMIT	ON	M∨	318.717	80.000	320.000	320.000	0.029	320.000	ON	GOOD	
HTU1	<u>1FC_168.SP</u>	MV08 - ICR [Inter relux]	N	HI LIMIT	ON	M∨	695.738	400.000	700.000	700.000	0.100	700.000	ON	GOOD	
HTU3	1FC_493.SP	MV09 - LD TO TANKAGE	N	EXT TARG	ON	M∨	36.858	32.000	46.310	100.000	0.257	46.310	ON	GOOD	
HTU4	<u>1FC_494.SP</u> ₪	MV10 - LD TO HTU1	N	EXT TARG	ON	M∨	52.128	30.000	51.687	90.000	-0.014	51.687	ON	GOOD	
▶ NAP	1FC_2150.SP	MV11 - LD TO HTU2	N	EXT TARG	ON	M∨	15.934	5.000	11.345	20.000	-0.128	11.345	ON	GOOD	
	<u>1F431R.SP</u>	MV12 - TOTAL HVY DSL	N	NORMAL	ON	M∨	117.975	80.000	111.051	170.000	-0.194	107.828	OFF	BAD	
	1FC_779.SP	MV13 - LCR	N	HI LIMIT	ON	M∨	447.914	400.000	450.000	450.000	0.049	450.000	ON	GOOD	
	1FC_167.SP	MV14 - STRIPPING STEAM	N	EXT TARG	ON	M∨	6.539	5.000	6.584	6.600	0.001	6.584	ON	GOOD	
	<u>1FC_780.SP</u>	MV15 - STRIPPING STEAM	N	EXT TARG	ON	M∨	6.215	5.000	6.260	6.300	0.001	6.260	ON	GOOD	
	1FC1FDK.PV ₪	DV01 - TOTAL FEED TO HTRS	N	NORMAL	ON		1212.610								
	<u>1T2067V.PV</u> 🖭	DV02 - FLASH ZONE TEMP	N	OUT SRV	OFF		325.892								
	1FC_2149.SP	DV03 - KERO TO HTU1	N	NORMAL	ON		5.075								
	1FC_2616.SP	DV04 - KERO TO HTU2	N	NORMAL	ON		25.504								
	1FC_1916.SP	DV05 - LCR FLOW EX 1E26	N	NORMAL	ON		287.037								

Operations Overview Interface

ULSD Optimization System Uptime From 2006 to 2014

Pembroke CDU Heat Balance Optimization

- Refinery focus on heat recovery
- New APC/Opt approach using a GDOT heat balance model
- ULSD Optimiser extended with around 40 new variables for the CDU heat exchanger network
- Modelling Objectives:
 - Maintain and shift duty accurately and fast
 - Deal with nonlinearity's
 - Delta T variations resulting in flow gains to change significantly
 - Long term fouling
- No step testing, all mathematically derived!
- No changes to the DMCplus model and operator interface!

Heat Balance Variables added to GDOT

PEM_ULSD_OPT -	GDOT (ENGINEER) - 14									
ile View Tools	Help									
Application			Status							
(GDOT		S	TAT	US:					Advisory
										OFF
PEM_	ULSD_OPT		SOL	UTIC	DN :					OFF
CV VIEW	MV VIEW	O	BJ FUN	с	OPT D	ETAIL	CONNECT	APP		
MV Links	MV Status/Control	MV I	nput Proc	ess	1					
MV	Name		Status		Current	Optimize	d Low Limit	High Limit	t	
38 OFF 1F	C_492.SP - LD STM		OFF	FRC	0.916	0.91	6 0.5	1.2		
39 OFF 1F	C_199.SP - HD STM		OFF	FRC	3.054	3.05	4 0.5	1.6		
40 ON 1T	PA_DUTY.PV - TOP PUN	IPA	GOOD		11.169	11.10	i9			
41 ON RX	_DUTY.PV - Cold reflux	duty	GOOD		2.751	2.69	07			
42 ON E1	5_DUTY.PV - E15 duty c	alcul	GOOD		0.687	0.68	57			
43 ON E5	3_DUTY.PV - E53 duty tr	ransf	GOOD		10.642	10.64	12			
44 OFF E1	5_DT.PV - Average exch	ang	OFF		39.749	39.74	19			
45 OFF E5	3_DT.PV - Average exch	ang	OFF		57.282	57.2	32			
46 OFF E9	_DT.PV - Average excha	nge	OFF		45.986	45.98	36			
47 ON IC	R_DUTY.PV - 1E2 Inter c	ircul	GOOD		25.722	25.89)3			
48 ON LC	R_DUTY.PV - Lower circ	: (HD	GOOD		28.132	28.11	12			
49 ON E2	6_DUTY.PV - LCR to sta	bilis	GOOD		8.104	8.10	4			
50 ON E2	4_DUTY.PV - LCR to cru	de p	GOOD		20.028	20.00)8			
51 OFF ICF	R_DT.PV - ICR delta tem	p cal	OFF		87.808	87.80)8			
52 OFF E2	6_DT.PV - E26 delta tem	p cal	OFF		69.458	69.4	58			
53 OFF E2	4_DT.PV - E24 delta tem	p cal	OFF		94.448	94.44	18			
54 ON 01	PC1082.SP - COLD FEEI)	GOOD		9.205	9	.2 9.2	11	LO	
55 OFF 1F	C_1912.SP - HOT AR -> \	VDU	IGNOR	FRC	325	32	25 250	500		
56 ON 01	C107A.SP - H101 PASS	A	GOOD		28.357	28.60	03 22	50		
adv								FA		

GDOT Model based on simple heat duty transfer equation derivatives:

Q=Cp*Flow*DeltaT

Post Audit Results - Cooling Duty lost to Ambient

Post Audit Results – Duty to Preheat

Post Audit Results – Inter Reflux Movements

Post Audit Results – Naptha Cutpoint vs Kero Flash

(aspentech

© 2018 Aspen Technology, Inc. All rights reserved.

Thank You