

Steam System Model Development in RTO Application

Aimin Xu

The Dow Chemical Company AspenTech ACOWUG 2018

® [™] The DOW Diamond is a Trademark of The Dow Chemical Company ("Dow") or an affiliated company of Dow AspenTech ACOWUG 2018

Acknowledgement

Rahul Bindlish

Overview

- Background
- Steam system modeling development
- Summary

Optimization Objective Function

• The objective function will be maximized as the revenue generated from product minus the cost of feed and utilities.

$$Profit = \sum Product_i C_{p,i} - \sum Feed_j C_{f,j} - \sum Utility_k C_{u,k}$$

- $C_{p,i}$ = Revenue from Product *i*
- $C_{f,j}$ = Cost of Feed j

 $C_{u,k}$ = Cost of Utility k

 Utilities imported will be treated as a cost with utilities exported as a credit.

Process Overview

Five parallel reactor trains with associated cooling water and steam

- RTO benefits
 - ✓ Yield optimization
 - ✓ Optimal reactor load balancing

Steam System for one reactor train

Steam System Overview

- Each reactor train has three steam headers at three different pressure levels: HP, MP & LP
- HP, MP & LP headers are connected throughout the entire site
- LP header gets most of its steam from turbine letdowns
- All reactor trains can either import or export different pressure steams
- Each reactor train has a back pressure controller on the HP export line to maintain pressure in the reactor system

Steam Model Development

- Steam Model was developed using Aspen Plus Optimizer in equation oriented modeling environment
- Component material balance, energy balance and thermodynamics in the model with approximately 3,000 equations, 80 spec groups, 50 blocks, and 120 measurements.

Modelling Guidelines

- Include the 600#, 150#, and 75# steam headers, the condensate return headers, deaerators, and the boiler feed water headers.
- The steam and boiler feed water sides of all heat exchange equipment are modeled within their respective process-side hierarchies.
- Makeup/letdown lines to/from the various headers to manage pressure control including logic as required (modeled using calculators).
- Lines to/from the scope of the utilities system to areas out of scope are be lumped together as required. The rates are estimated prior to solution.
- Boilers not modeled. Steam from the boilers is treated as an import line to the scope of the section and are priced appropriately.
- Steam to/from the battery limits of the scope of the integrated plant model are priced appropriately.

Overall Simplification of Steam System

HP Steam Header Model

(SUPPLY)

(DEMAND)

(IMBALANCE)

HPSUPL = HP-TOX + HP-R1 HPDMD = MISC-HP + T252-HP + LDLP-HP HPIMB = HPSUPL - HPDMD IF (HPIMB .LT. 0.0) THEN HP-IMP = - HPIMB + 1.0 EXP-HP = 1.0 ELSE EXP-HP = HPIMB + 1.0 HP-IMP = 1.0

ENDIF

June 2018 - A. Xu

Spec Groups for Pressure Control

Spec group: VHP-PC V Enabled	
Description 600 PSIG HP STEAM HEADER PRESSURE CONTROL	
List of variables	
Variable	User spec
HP-HDRS.BLK.EXP-HP_MASS	Constant
HP-HDRS.BLK.HP-HDRO_MOLES	Calculated
HP-HDRM.BLK.HP-HDRO_MOLES	Constant
HP-HDRM.BLK.HP-IMP_MOLES	Calculated
HPHDRS.BLK.HP-IMP_MOLES	Constant
HPHDRS.BLK.HP-IMP_MASS	Calculated
*	

Steam Balance Results

Variable	Value (Export)	Value (Import)	Units
BLK.TOX 600 PISG STM GEN F	89279.6	X 0.1 ► 8927.96	LB/HR
BLK.R1 600 PISG STM GEN F	78231.9	78231.9	LB/HR
	167511	87159.9	I B/HR
BLK HP STM IMPORT	1	53552 9	I B/HR
	26801 8	Export 2 Import	I B/HR
BLK MISC HP STM LISAGE E	1000 7	1000 7	
BLK T252 STM F	138711	138711	
	1	100711	
	1/0712	140712	
DLK.RF_STWI_DEMAND_F	140712	1407 12 E2EE1 0	
DLN.000_F3IG_FIF_3TEANI_INIBALANGE	20799.8	-53551.9	LD/UK

June 2018 - A. Xu

HP Steam Import/Export

HP Steam Export

Unit: MLB/HR

HP Steam Import

Unit: MLB/HR

Overall Steam System Scenario Analysis Results

Overall Steam System Scenario Analysis Results (Cont'd)

Unit: MLB/HR

Summary

- Steam system modeling within a chemical plant optimizer is important to track and value the utility contribution to the objective function
- Appropriate simplifications are needed to ensure robustness for the optimizer without compromising the results
- An example of steam system model development for a chemical plant optimizer was demonstrated