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ally being modified as samples are selected from the training set 
and compared to the neuron set. Over time old edges connecting 
neurons may disappear if the connected neurons are no longer 
nearest neighbours. When a neuron becomes isolated it is deleted 
from the neuron set. The resulting neurons are then clustered 
using a hierarchical clustering method into neuron clusters known 
as classes, based on their data similarity.

These classes are then used to classify all the samples in the 
dataset and propagated onto the seismic data to create a classifi-
cation volume. With this methodology it is possible to focus the 
clustering on anomalies (Hami-Eddine, 2012).

Data
Carbon capture and storage has been performed at the Sleipner 
Field in the North Sea since its first injection in 1996 (Furre 
et al, 2017). Equinor has made a 4D dataset publicly available 
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Background
In carbon capture and storage (CCS) projects, monitoring of the 
storage site after CO2 injection is crucial to understanding its 
evolution and verifying there is no major loss of containment 
from the intended storage reservoir. Time-lapse seismic data pro-
vides images of the storage area at different times, highlighting 
any spatial variations due to fluid migration. However, it can be 
difficult to know which attributes to apply, and it may be tedious 
to manipulate a large number of attributes for each time-lapse 
volume.

Using different seismic vintages from the Sleipner Field 
dataset (courtesy of Equinor), this article shows how a machine 
learning workflow based on a Self-Growing Neural Network 
(SGNN) is an efficient and unbiased scanning tool. When it 
comes to CCS monitoring, it enables the interpreter to quickly 
identify the evolution of the confinement system without the need 
for long quantitative workflows. Analysis of the confinement 
system includes CO2 migration inside the storage formation as 
well as subtle variations in the seal which may be missed by 
traditional seismic attribute analysis.

Methodology
The AspenTech Attribute Clustering workflow utilises machine 
learning to create a facies volume and associated probability 
volumes. It uses a Self-Growing Neural Network (SGNN) – an 
unsupervised incremental machine learning algorithm. This is 
sometimes also known as Growing Neural Gas (Fritzke, 1995) 
because the model uses a vector-based network where the neu-
rons behave like a gas during the training process.

The training dataset is composed of a number of seismic 
or attribute volumes. During the training process, the growing 
neural gas model is used to generate initial neuron sets which 
are representative of the training dataset. The process starts 
with two neurons connected by a vector in an n-dimensional 
crossplot, with each axis representing an attribute. The location 
in the cloud of these two neurons is then compared to a sample 
from the training dataset. The closest neuron may be moved, thus 
also modifying the location of the connected neuron, and a new 
neuron may be added as needed to best describe the data from the 
training dataset. The process continues with the neurons continu-
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Figure 1 Projection of network topology on a disc during the learning process.  
(A) Neuron 195 will be eliminated from the network as it does not connect to other 
neurons. (B) The main network maintains edges between neurons. The edges 
evolve during the iterations. All the neurons do not have the same number of 
topological neighbours. (C) The network is already separated into two sub-networks: 
a massive network in the centre of the picture (B) and a linear satellite on the left.
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RMS amplitude volumes were calculated from the 1994, 
2001, 2004 and 2006 vintages and were found to give better 
results when inputted into the SGNN workflow rather than the 
original amplitude volumes. A time slice of the resulting classifi-
cation volume is shown in Figure 4. This process highlights any 
anomalies, including those which are associated with injection. 
The number of output classes can be modified depending on the 
desired results. In this case, the use of seven classes was found to 
give the best result.

Thanks to the different classes represented by the associated 
colours, it is possible to see the extent of the CO2 plume around 
the 15/9-A-16 injector well at the different times. In this case, 
it shows predominantly blues, purples and reds, representing 
Classes 2, 5, 6 and 7. Additional anomalies further away from the 
injection site can also be seen. These are predominantly shown in 
green representing Class 4.

A parallel plot is a useful tool for better understanding the 
meaning behind these classification results (Figure 5). This 
provides a quick way of visualising how the values of each facies 
class correspond to each input volume.

Each vertical line in the parallel plot represents a different 
input volume to the SGNN workflow. In this case each volume 
was acquired at a different time, earliest on the left and most 
recently on the right. The vertical axis shows the range of 
values. These have been equalised in order to aid interpretation 
of the plot.

Each line that goes from left to right and intersects the 
vertical axis represents a data point from the neuron set. These 
are colour-coded according to their class.

Figure 5 shows four of these classes representing three 
different categories:

The first category is a background class as represented by 
Class 1 in the brownish-red colour. This appears flat, with nor-
malised values of around 0. This means that there is no specific 
seismic response or difference in values between input volumes; 
therefore, it can be said that this does not alter over time. This 
class is not significant for this evaluation but may be useful as a 
reference to compare to other classes.

The second category can be referred to as a consistent 
anomaly. In this case the values of the class are not zero, 
but they do not vary significantly between input volumes 
(representing different acquisition times). An example of this is 
Class 4 shown in green in Figures 4 and 5. In this case it can be 
interpreted that this is an anomaly which is present in the 1994 

with a number of seismic volumes acquired between 1994 and 
2010. This study uses seismic data from four vintages: 1994, 
2001, 2004 and 2006. These were chosen because they were all 
reprocessed in 2007 and therefore the differences between the 
vintages related to processing should be minimised. Figure 2 
shows two of these amplitude volumes – the 1994 baseline 
survey before injection and the 2006 survey after around ten 
years of injection of CO2.

A combination of structural and stratigraphic seismic attrib-
utes was calculated for each of the four time lapse seismic 
volumes for input to the classification workflow.

Figure 3 shows how this classification workflow can 
be run using multiple vintages as input. In a carbon capture 
and storage scenario these anomalies can represent changes 
between the time-lapse seismic volumes related to injection. 
Alternatively, the SGNN classification can be run separately 
for each vintage, allowing comparison of anomalies over time. 
In this case study these techniques have been used to monitor 
the changes observed in two intervals – the reservoir and the  
caprock.

Reservoir monitoring
The analysis first focused on the reservoir interval, in which evi-
dent variations can be observed as shown in Figure 2, to generate 
one unique output aimed at highlighting the different variations 
over time due to injection.

Figure 2 Comparison of seismic amplitude volumes before CO2 injection in 1994 
and after several years of injection in 2006.

Figure 3 Volumes inputted into Self-Growing Neural Network (SGNN).

Figure 4 SGNN classification result over the reservoir calculated for the four 
vintages (94, 01, 04 and 06). The different seismic facies highlight anomalies, 
including the variations in vintages related to the CO2 injection.
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to capture with conventional geometrical attributes, whereas this 
attribute allows the identification of subtle faults and fractures 
most likely to occur in caprock lithologies. The resulting volume 
is shown in Figure 6 for a horizon slice 50ms above the top 
reservoir.

The parallel plot analysis can again help to interpret the 
classification result (shown in Figure 7 for selected classes). On 
the lefthand side of the parallel plot are the RMS attributes for 
the various vintages, while the righthand side shows the fault 
likelihood attributes. In this case it can again be observed that the 
background class (Class 1 in brownish red) does not vary between 
volumes. The other classes have a plateau-like appearance with 
little variation between the different vintages for the different types 
of attributes – RMS amplitude and fault likelihood. These can be 
considered consistent anomalies within these groups of attributes.

This indicates that anomalies correspond to features present 
prior to the injection and show little variation over time. The 
Class 7 in this case can be seen to represent the natural gas 
accumulations outside the injection area, whereas the Class 4 do 
appear to be present above the injection site. We can, however, 
say that these features appear to be unaffected by injection. In 
this case, no evolving anomalies where values change over time 
can be identified.

As the methodology enables the integration of a large number 
of inputs, it was decided to investigate whether additional attrib-
utes could help to refine and increase confidence in the results.

baseline survey and does not change substantially in subsequent 
volumes. Therefore, it can be interpreted as being unaffected 
by injection.

The third category can be referred to as evolving anomalies. 
In this case the attribute values vary between volumes and thus 
represent a change over time due to injection. Examples of 
this category are Class 5 in pale blue and Class 7 in purple in 
Figures 4 and 5.

We can therefore see that the classes associated with the main 
CO2 plume (e.g. Classes 5 and 7) change over time as injection 
continues. However, the green anomalies away from the injection 
site (Class 4) do not vary on the parallel plot and therefore can be 
seen to have a consistent value over time. These are interpreted to 
be associated with small natural gas accumulations (Chadwick et 
al, 2014) which can be seen in the 94 volume and have not been 
introduced or affected by injection.

With this methodology, the interpreter can focus on interpret-
ing the classes. The different classes are results of the algorithm, 
meaning there are no intermediate steps requiring manual input, 
which can be tedious and generate bias in the analysis (for 
example, defining polygons or relationships needed in other 
quantitative workflows). Thus, this approach streamlines and 
unbiases the monitoring workflow.

This analysis has shown how the SGNN classification work-
flow can be used for 4D monitoring, focusing on the reservoir 
interval where large variations are observed. The analysis can 
then be performed for the seal of the confinement system.

Seal monitoring
Seal integrity monitoring focuses on variations above the reser-
voir to verify there is no major loss of containment. In the case 
of CO2 leakage into the caprock, two things would be expected 
– new vertical features (such as chimneys going from reservoir
to caprock) or accumulations which would be represented by
horizontal features consistent with the geology.

As with the reservoir interval, classification can be run for the 
overburden using multiple vintages as input. In this case, SGNN 
classification was first run for the overburden interval using RMS 
amplitude and a structural attribute for the four vintages. Various 
structural attributes were tested and the Fault Likelihood attribute 
(Hale, 2013) was found to be the most effective at capturing 
structural variations. Potential leakage pathways may be difficult 

Figure 5 Parallel plot presenting amplitude variations through time; each facies 
class shows background (Class 1), consistent (Class 4) and evolving anomalies 
(Classes 5 and 7).

Figure 6 SGNN result for the four vintages on a horizon slice 50ms above the 
top reservoir. This highlights any anomalies, including the gas chimney features 
(shown in blue and yellow) which can be observed in the pre-injection 1994 vintage 
seismic. The extent of the injected CO2 (from 06 volume) is shown by the green 
polygon.

Figure 7 Parallel plot presenting no major variations through time for the 
background (1), or the anomalies (e.g. 4, 7).
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of these classes can be better understood by viewing them on a 
parallel plot.

The parallel plot in Figure 9 shows some of the classes 
associated with the previously identified natural gas accumu-
lations. Due to the additional input volumes and classes, the 
parallel plot is now significantly larger; however, changes 
through time can still be evaluated by checking whether an 
attribute is background, evolving or consistent within the groups 
of attributes. The classes associated with the gas accumulations 
(Class 12 and Class 15) show increasing response associated 
with higher frequencies. When considering the variation of each 
attribute between the vintages, these again do not show much 
variation. They have a flat appearance; therefore these can be 
classed as consistent anomalies which have been unaffected by 
gas injection.

Inside the lateral extension of the injected CO2

In Figure 8 some small anomalies can be detected above the 
area where injection has taken place. In this new classification, 
these anomalies are represented by different classes e.g. 
3, 9, 10 and 14. Figure 10 shows the parallel plot compar-
ing these classes with Class 15, which has been associated 
with the natural gas accumulations described in the previous  
analysis.

The first thing that can be noted is that these anomalies (Class 
9 in green, Class 10 in blue, Class 3 in red) have a significantly 
different characteristic than the natural gas accumulations (Class 
15 in purple). There is no notable variation between the different 
frequencies and RMS is low, whereas the gas accumulations 
show higher RMS amplitudes and variation between the low and 
high frequencies. Additionally, there is no significant variation 
for each attribute between vintages; therefore these classes can 
be regarded as consistent anomalies.

Certain features or fluids may be more apparent at particular 
frequencies. Consequently, spectral decomposition volumes 
may detect image anomalies which the other attributes may 
not. Therefore, five spectral decomposition volumes were 
generated for each vintage and incorporated in the SGNN 
classification alongside the RMS and fault likelihood volumes. 
The number of classes was raised from 7 to 15 to provide 
additional details. The refined classification results are shown in  
Figure 8.

In this new classification a similar pattern can be seen; howev-
er, as the anomalies are now represented by more classes, a more 
granular analysis is perceived. Additionally, the overall image is 
cleaner, with more distinction between the anomalies of interest 
and the background. For example, the Class 2 anomalies seen in 
Figure 6 are now largely incorporated into the background class.

Outside the lateral extension of the injected CO2

In this new classification result the gas accumulation outside the 
injection area is represented by several classes – the most laterally 
extensive of which are Classes 15 and 12. The characteristics 

Figure 10 Parallel plot showing comparison of class 15 associated with natural gas accumulations and other anomalies.

Figure 9 Parallel plot showing classes associated with natural gas accumulations.

Figure 8 SGNN result including spectral decomposition on a horizon slice 50ms 
above the top reservoir. The extent of the injected CO2 (from 06 volume) is shown by 
the green polygon.
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all identified anomalies in this case are present in the original 
1994 baseline volume and therefore do not appear to be due to 
injection.

This methodology is an efficient scanning tool for CCS moni-
toring, providing a simple way of combining multiple vintages and 
attribute volumes, and outputting a single classification volume for 
a streamlined interpretation. The result is free from interpreter bias 
and can allow the identification of even subtle features which may 
have been missed by conventional 4D analysis.
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In summary, the classification interpretation over the seal 
interval shows the following characteristics:
•  Any anomalies appear to be present in the pre-injection base

survey.
•  No evolving anomalies, which would be characterized by var-

iations for a given attribute over time such as those identified
in the reservoir interval, were identified.

•  Classification volume visualisation and analysis do not reveal
any proof of significant new vertical features, lateral extension
indicative of leakage or a fracture network.

This increases confidence that there has been no leakage from 
the reservoir.

Conclusion
This article describes how the AspenTech unsupervised SGNN 
classification can be used in a CCS case for two objectives: 
monitoring the evolution of the CO2 migration inside the storage 
formation, and seal integrity.

Running classification on the reservoir interval clearly shows 
the extent of injected CO2 and how this varies with time. The 
parallel plot is shown to be an important tool where different 
types of anomaly can be identified – e.g. consistent or evolving.

When the same process is applied to the caprock interval, 
anomalies can be identified. Analysis of the parallel plot shows 
that different anomalies have different characteristics; however, 
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