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Characterizing seismic facies in a carbonate reservoir, 
using machine learning offshore Brazil

G&G TECHNOLOGY

Seismic data can provide 
useful information for 
prospect identification and 
reservoir characterization. 
Combining seismic attributes 
helps identify different 
patterns, thus improving 
geological characterization. 
Machine learning applied to 
seismic interpretation is very 
useful in assisting with data 
classification limitations.

 ŝ RAISA CARVALHO, Emerson and 
Universidade Federal Fluminense,  
MARIA GONZALEZ, Emerson and WAGNER 
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The authors propose an approach that 

uses machine learning to characterize car-
bonate facies in a wildcat (Gato do Mato) 
prospect in the Santos basin, offshore 
Brazil. We analyzed different seismic at-
tributes and selected those that best re-
sponded to the seismic patterns identified 
in the study area as input for an unsuper-
vised classification.

The classification method used is the 
self-growing neural network (SGNN) tech-
nique that consists of the following steps:

1. Seismic pattern identification 
in seismic amplitude. The main 
patterns identified are build-
up, debris, carbonate platform 
and bottom lake facies.

2. Generation and analysis of seismic 
attributes to characterize seismic 
patterns. We chose Eigen coherence, 
dip-steered enhancement, relief 
and relative acoustic impedance to 
help in seismic characterization.

3. We performed principal component 

analysis (PCA) of the attributes: 
amplitude filtered from dip-
steered enhancement (seismic-
driven structural filtering), 
Eigen coherence and relief.

4. Unsupervised seismic classification 
from the PCA of seismic 
attributes (item 3 above).

Using this approach, we associated the 
classified seismic facies with the patterns 
identified in the amplitude data. The seis-
mic facies allowed us to differentiate the 
carbonate platforms from the build-up fa-
cies. However, the classification encoun-
tered difficulties in identifying the patterns 
associated with lake bottom facies and the 
chaotic seismic pattern of debris facies.

INTRODUCTION
Seismic attributes are efficient tools for 

highlighting stratigraphic and structural 
features. Seismic attributes are highly ef-
fective in emphasizing stratigraphic fea-
tures that can be easily detected (or not) 
in seismic amplitudes. Taner (2000) de-
fines a seismic attribute as any informa-
tion extracted from seismic data, whether 
logical or based on geological/geophysical 
knowledge. In seismic characterization, 
seismic attributes are combined to iden-
tify seismic patterns that can be associated 
with depositional environments and dia-
genetic processes.

Machine learning algorithms have 
proven to be a powerful tool in solving 
problems involving large volumes of data. 
In seismic multi-attribute analysis, these 
techniques have been used in seismic facies 
classification for reservoir characterization. 
They have been a key element in a better 
understanding of reservoirs, allowing more 
detailed analyses and more reliable results, 
reducing the uncertainties inherent in the 
exploratory process. Furthermore, seismic 
pattern analysis uses this type of technol-
ogy in combination with geostatistical 
methods for facies probability volumes.

The Santos basin, which is the focus of 
this study, is Brazil’s largest offshore basin, 
Fig. 1 (an area of approximately 350,000 

Fig. 1. Map of the Santos basin outlining the Wildcat (Gato do Mato) Prospect  
(after Neves 2019). 
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km2). It is the primary hydrocarbon pro-
ducer in the country with an average 2.8 
MMboed, out of total Brazilian produc-
tion of 3.8 MMboed, according to Agên-
cia Nacional do Petróleo, Gás Natural e 
Biocombustíveis. The reservoirs are de-
scribed as lacustrine carbonates of Aptian 
age (Buckley 2015).

Given the importance of understanding 
and analyzing these reservoirs, we propose 
an approach for the identification and char-
acterization of carbonate facies in the wild-
cat prospect, which is in the outer high that 
is the main region of the pre-salt reservoirs 
of the Santos basin. In our workflow, we 
chose stratigraphic and structural seismic 
attributes and performed an unsupervised 
facies classification, using the self-growing 
neural network (SGNN), a machine learn-
ing algorithm based on growing neural gas.

GEOLOGIC SETTING
The main Brazilian pre-salt reservoirs 

are in the Barra Velha formation. This for-
mation can be divided into two tectonic 
sequences by the Intra-Alagoas uncon-
formity, the upper and lower Barra Velha, 
with the basal belonging to the rift sec-
tion and the upper belonging to the sag 
phase. Fig. 2. The Barra Velha formation 
is characterized by the occurrence of in-
situ (shrub, spherulite and laminate) and 
reworked facies deposited in a lacustrine 
environment during the Aptian.

The outer high of the Santos basin 
(Fig. 1) represents an uplifted structure 
from the basement and marks the transi-
tion from volcanoclastic deposition to al-
most continuous deposition of carbonate 
during Barremian and Aptian (Buckley 
2015). The structure of this high is delin-
eated by NE-SW trend faults. Structural 
highs influenced the pattern of Cretaceous 
carbonate accumulation over Neogene 
sedimentary strata. These highs condi-
tioned the accumulation of pre-salt car-
bonates, isolating them from the continen-
tal clastic sediment region.

METHOD
The seismic data available for analysis 

is a PSDM (pre-stack depth migration) 
volume of approximately 1,100 km2, pro-
vided by Agência Nacional de Petróleo, 
Gás Natural e Biocombustíveis (ANP). We 
interpreted the horizons and faults on this 
seismic amplitude for interval definition, 
analysis of seismic patterns and facies clas-
sification, Fig. 2.

To analyze the main geological configu-

rations and characterize carbonate facies, 
we performed the following steps, Fig. 3: 
1) carbonate seismic pattern identification 
through seismic amplitude; 2) seismic at-
tribute generation and analysis; 3) prin-
cipal component analysis (PCA); and 4) 

unsupervised seismic classification.

Carbonate seismic pattern identifi-
cation through seismic amplitude. 
Recent studies on the characterization 
of seismic patterns in pre-salt reservoirs 
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Fig. 2. PSDM seismic amplitude section, showing horizon and fault interpretations. 
The chart at the right shows the stratigraphy with tectonic evolution phases and 
unconformities of the pre-salt interval at the Santos basin (after Moreira 2007, Wright & 
Barnett 2015, Buckley 2015 and Neves 2019).

Fig. 3. Flowchart with the methodology steps for seismic facies characterization in the 
Wildcat Prospect.

Fig. 4. Seismic facies patterns of the Barra Velha formation identified in the seismic 
amplitude.

Fig. 5. Seismic attributes computed within the interval of interest. The seismic amplitude 
after applied DSE, relief, and Eigen coherence attributes were used as input for the PCA 
workflow, while the attribute relative acoustic impedance was used together with the 
result of the PCA to generate the facies classification.
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show that the main configurations found 
are build-ups (carbonate mounds), car-
bonate platforms, debris and bottom lake 
facies, with the carbonate mounds repre-
senting the facies with the best porosity 
and permeability.

Figure 4 illustrates the seismic pat-
terns identified in the Barra Velha For-
mation, between the Pre-Alagoas un-

conformity and the base of salt horizon, 
previously interpreted. Build-up facies 
are characterized by chaotic seismic tex-
tures with a conical external geometry. 
Debris exhibits prograde geometry with 
a chaotic internal texture. The carbon-
ate platform facies show well-defined flat 
parallel reflectors. The bottom lake facies 
do not have specific geometry, and the 

reflectors are chaotic internally.

Seismic attribute generation and 
analysis. The following seismic attributes 
were generated to assist the seismic char-
acterization, Fig. 5. Dip-steered enhance-
ment (DSE) is performed as a seismic 
filter oriented to dip and azimuth, which 
executes lateral filtering along the surfaces. 
This filtering enhances the lateral continu-
ity of reflectors and removes noises. In this 
work, we apply the DSE before generating 
the Coherence Cube attribute, as this at-
tribute is sensitive to the presence of noise.

Eigen coherence attribute is the ratio 
of the energy of the data’s coherent com-
ponent to the energy of the original traces 
within the analysis window. The eigen 
structure method analyzes a window of 
traces and determines which wavelet best 
represents the waveform variability. This 
wavelet is scaled to fit each input trace, 
providing the coherence component of the 
data. The coherence attribute allows the 
analysis of structural characteristics, since 
it measures the similarity or non-similarity 
of seismic data. We use it to understand the 
lateral extent of geological features (seis-
mic patterns) and to assist in the identifi-
cation of more fractured regions, such as 
carbonate mounds.

The relief attribute was developed by 
Bulhões and Amorim (2005). It is called 
amplitude volume attribute (TecVA), and 
it aims to increase the visualization of re-
flectors and faults, showing small varia-
tions in amplitude in a lateral trace-to-trace 
correlation. This attribute is very useful for 
highlighting the subsurface geology by de-
tailing the discontinuities and lateral varia-
tions of the seismic facies and enhancing 
the lateral continuities of the reflectors.

Relative acoustic impedance compu-
tation is based on seismic trace integra-
tion, followed by low pass filtering. This 
attribute is an indicator of acoustic im-
pedance changes. This is a stratigraphic 
attribute that assists in identifying and 
delimiting layers.

Principal component analysis (PCA). 
PCA is the process of computing the prin-
cipal components on the data. It can be 
used before the seismic classification as a 
filter to reduce the input space dimension. 
The low variability of seismic data makes 
the PCA a very efficient method for reduc-
ing the samples in the input space. When 
applied in seismic multi-attribute facies 
classification workflows, the transformed 

Fig. 6. Chart showing the seismic pattern for each computed attribute. The merge of 
attributes like Eigen coherence and amplitude highlights some characteristics of the 
identified seismic facies. The build-up (A) shows their fractured internal structure and 
conical morphology, and the bottom lake facies (D), their parallel plane reflectors.  The 
merge of the relief and the seismic amplitude highlight the plane-parallel reflectors of 
the carbonate platform facies (C) and the chaotic and fractured internal structure of the 
debris facies (B).

Fig. 7. Depth slice 5424, showing the three resultant components of the principal 
component analysis. The PCA was performed with the amplitude, Eigen coherence and 
relief attributes as input. The components, PCA2 and PCA3, were chosen as input for 
the facies classification, due to their better discrimination between build-ups and the 
carbonate platform. 
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data can identify and differentiate hidden 
features. The results can improve seismic 
pattern classification.

Mathematically, PCA finds the princi-
pal directions in multi-dimensional data 
and determines the optimal shift and 
rotation of the data to be expressed in 
those principal directions. In addition, it 
classifies the directions according to a de-
crease in the greatest contribution of each 
component, which can be used to reduce 
dimensionality. In this study, the seismic 
attributes used as input for the PCA were 
the seismic amplitude filtered by the DSE, 
Eigen coherence and relief attributes.

Unsupervised seismic facies classifi-
cation with attribute clustering. Attri-
bute clustering is a method for automatic 
unsupervised facies classification. For this, 
we can use a machine learning algorithm, 
such as Self-Growing Neural Network 
(SGNN) or Growing Neural Gas. This 
method uses a system based on neurons 
that behave as a gas during the training 
process.

The SGNN technique builds a topol-
ogy defined dynamically that maintains 
the neighborhood relationships of the 
data. Two principles are honored: i) two 
neighbor elements in data space continue 
as neighbors in the topology space, and ii) 
more neurons are assigned to regions with 
a dense level of information. Thus, several 
neuron families are created, based on the 
data similarity and propagated later into 
seismic using a Bayesian approach.

Three steps are necessary to perform 
the seismic facies classification. The first is 
selection of the seismic attributes and the 
interval for the classification. The neural 
network is then trained on the input data. 
In this step, the algorithm identifies the 
main data trends that can be used to clas-
sify the data. Finally, in the classification 
part, a facies volume is generated with the 
related probability facies. The trained neu-
ral network will be used to estimate prob-
abilities for each facies. As result, we have a 
most probable facies volume and probabil-
ity volumes for each facies.

RESULTS
Before the attribute computation, the 

seismic amplitude was filtered, using dip-
steered enhancement (seismic-driven 
structural filtering) to help improve con-
tinuity of the reflectors and reduce noise 
and migration smiles. This attribute was 
then used as input for the Eigen coherence 

computation. In Fig. 6, we can observe the 
results of the Eigen coherence, which em-
phasize the build-up and bottom lake fa-
cies. Meantime, when analyzing the same 
attribute, we observe an internal chaotic 
texture and a fractured central region in 
the debris facies, while the carbonate plat-
form facies show flat parallel and well-de-
fined reflectors.

The relief attribute accentuates the re-
flectors’ continuities and chaotic zones and 
helps to identify the debris seismic facies 
and the carbonate platform. The debris 
patterns present a prograde geometry with 

a fault system in the proximal part and a 
chaotic pattern in the distal part. The relief 
attribute shows the carbonate platform as 
flat parallel and well-defined reflectors. We 
decided to compute the relative acoustic 
impedance to obtain a better resolution 
volume with information about acoustic 
impedance changes.

The contribution of each component 
of the PCA was about 33%. We chose 
only two of the three components where 
the differentiation between build-ups and 
the carbonate platform was more evident, 
Fig. 7. Later, those components, together 

Fig. 8. Parallel plot showing each attribute contribution per seismic class. In this case, 
every class neuron for the different attributes has a good distribution, demonstrating 
that all attributes contribute to the classification.

Fig. 9. In the map view, it is possible to see that the dark blue (class 8) and violet (class 
9) colors, delimited by yellow dotted lines, can be associated with the carbonate platform 
facies previously identified in the seismic amplitude.  The region represented by the brown 
(class 1) and orange (class 3) colors, delimited by the black dotted lines, is related to 
the fracture zone. In this case, it is associated with the build-up facies. On both crossline 
sections, it is possible to identify the seismic patterns with their respective facies. 
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with the relative acoustic impedance vol-
ume, were selected as input for the seis-
mic classification.

The interval for the unsupervised facies 
classification was defined by the base of 
salt horizon and the pre-Alagoas unconfor-
mity. Several training runs were carried out 
until we found an optimal number of neu-
rons. In this case, a model with nine classes 
produced the best results to represent 
the carbonate seismic facies. Some qual-
ity controls were performed to guarantee 
more confidence in the results. For exam-
ple, a parallel plot allowed the assessment 
of every attribute contribution during the 
neuron training. According to the plot 
shown in Fig. 8, there is a good distribu-
tion or variation of every class neuron for 
the different attributes, confirming that all 
the attributes contribute to the prediction.

During the classification stage, we used 
a K nearest neighbor (KNN) method, 
which allows the estimation of the most 
probable facies by defining the neuron in-
fluence area as a Gaussian function (weight 

= e-distance). Smoothing was performed 
on the results from the seismic dip and azi-
muth volumes. Finally, we obtained a most 
probable facies volume and the probability 
for each class.

We associated some seismic facies with 
the seismic patterns of the Barra Velha For-
mation. We obtained a clear differentiation 
between the carbonate platform and more 
fractured areas related to the build-ups. Fa-
cies in dark blue (class 8) and violet (class 
9) are associated with the carbonate plat-
form because of their continuity and flat 
behavior. The brown (class 1) and orange 
(class 3) facies are more concentrated in 
areas that show more discontinuities (frac-
turing) like the build-ups. These types of 
facies are more present in areas closer to 
the main faults, Fig. 9.

The debris facies were not detected in 
the interval used for the facies classifica-
tion workflow. Similarly, the bottom lake 
patterns did not appear very evident, im-
peding their association with one of the 
seismic classes. The facies occurrence 

probabilities are shown in Fig. 10. The 
carbonate platform (dark blue and violet) 
and build-ups (brown and orange) pres-
ent a high probability of occurrence. This 
type of information is extremely useful 
for uncertainty analysis associated with 
facies modeling.

CONCLUSION
The amplitude, Eigen coherence, relief 

and relative acoustic impedance attributes 
help the identification and characteriza-
tion of build-ups, carbonate platform, de-
bris and bottom lake seismic facies, which 
are the main seismic patterns found in the 
Brazilian pre-salt reservoir. Those patterns 
have the following characteristics: Build-
up facies appear on the structural highs, 
near faults with high throws, with chaotic 
seismic texture and parallel and well-de-
fined conic external geometry; the carbon-
ate platform facies is located in horsts and 
presents flat-parallel and sub-parallel high 
amplitude reflectors; debris facies occur 
in the fault borders and exhibit a prograde 
geometry with chaotic internal texture. 
Finally, the bottom lake facies are found 
in structural lows and present transparent 
seismic facies.

Principal component analysis before 
the seismic classification aids in the dis-
cretion of build-ups and carbonate plat-
form facies, improving the classification 
results. The attribute clustering method, 
based on a machine learning technique, is 
an effective approach to differentiate the 
fractured zones mainly associated with 
build-up facies in the wildcat prospect, 
Santos basin, Brazil. 
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Fig. 10. Depth slice with the probability for each class and the most probable facies. 
Values closer to 1 represent higher probability of each class occurrence. Based on that, 
we observe that class 8 and 9 have a good probability to occur in the region interpreted 
as the carbonate platform facies and very low probability values of occurring in fractured 
zones associated with facies build-ups. In general, the maximum probability volume 
shows a good probability that all classes occur in the volume.
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