(aspentech | Study Guide

Aspen GDOT[™] Study Guide for Certification

Aspen Knowledge[™] Learn. Apply. Succeed.

Exam Scope for Aspen GDOT

- □ Introduction
- □ Infrastructure
- Opt Objectives
- Modeling Technique
- □ Model Development
- □ GDOT Structure
- Non-Linear
 Dynamics
 Optimization
- Open Equation
- Model Templates
- Dynamic Data
 Reconciliation
- Model Diagnostic
- Project Deployment
- Webserver & Visualizer
- Mixed Integer
 Programming

Grading

Grade	Weight	
Multiple choice	40%	
questions		
Lab task	60%	
Total	100%	

AspenTech

Call | Email | Chat

Prove Your Credibility

An Aspen GDOT Certified User has strong understanding of benefits, scope and how Aspen GDOT applications are integrated within the plant along with high level overview on steps required to build Aspen GDOT application. Passing this exam proves that you understand different components available with Aspen GDOT, build and maintain a basic Aspen GDOT application using Aspen GDOT offline tool.

Practice

Aspen recommends that you attend training through it's not required. Aspen also recommends that you attend Questions/Answer sessions before exam.

This guide contains 100% coverage of all objectives for the certification exam. You can use it as both a study tool and an on-the job reference (see pages 2-5).

Get Certified

In-person and remote testing are available. Please make sure that you select the correct Location/Time Zone.

After passing the exam you will receive an email to post your certificate and digital badge on social media, which is a cross-industry recognition of technical skills you may share on LinkedIn, as well as in your email signature. View the instructions on how to post your credentials on LinkedIn profile.

SCOPE	TECHNICAL CONTENT	TEST OBJECTIVE
Introduction	What is GDOT	Explain what is GDOT and where does it fit in the operation of the plant
		Explain k ey characteristic of a GDOT application
		Identify type of models can be used in a GDOT application
		Identify some of the GDOT advantages
		Identify the execution interval of a GDOT application
	GDOT Components	Describe GDOT application components
Infrastructure	What are the server requirements for GDOT	Explain GDOT software architecture
Opt Objectives	Project Overview	Identify typical Objective of AC&O application
		Summarize factors that makes solution non-obvious
	Middle Distillate Cluster	Use the MD GDOT applications
GDOT Refinery Application	Naphtha Processing	Use the Naphtha processing applications
Application	Utility/Hydrogen system	Use the Utility/Hydrogen applications
GDOT Modeling	Open Equations with Intermediate Feedback	Describe the advantages of Open Equation Model
	Linear Dynamics Optimization (LDO)	Identify the form of the linear model used in GDOT
Techniques	GDOT Optimizer	Identify the object function in GDOT
	GDOT Offline Modeling	Identify the GDOT offline tools
		Identify the GDOT add-ins
	Workflow	Identify the GDOT model development workflow
	GDOT Excel Template	Identify the available GDOT model templates
	Register GDOT applications	Perform a GDOT registration
GDOT Model Development	Use GDOT console	Use a GDOT console to start and monitor a GDOT application
	GDOT tunings	Identify various tunings for a GDOT application
	Input Validation	Input validation
	MVC status override	Use MVC status override
	Dynamics	Enter dynamic information for GDOT model

SCOPE	TECHNICAL CONTENT	TEST OBJECTIVE
GDOT Model Development	Transformations	Explain the need for transformation
GDOT Structure	Data Flow	Identify the data flow of the GDOT applications in a plant information system
	File Structure	Explain how GDOT engine uses various GDOT files
	Sources of Non-Linearity	Identify sources of nonlinearity
GDOT Non-Linear Dynamics Optimization (NLDO)	Transformation vs NL model	Distinguish between transformation and NL model
	Move Suppression	Explain the use for moving suppression in a GDOT application
	Model Update	Perform a model update
	GDOT processing cycle	Identify the GDOT processing cycle
	Data centric vs knowledge-based modeling	Distinguish between two approaches
	Gain Ratio	Describe the importance of gain ratios in a MIMO system
Open Equaton (OE)	Back-bones model	Identify the back-bones models
	Linking model sections (balance rows)	Summarize the advantages of balance rows
	Open model vs Convoluted closed model	Identify open model
	Workflow	Use Excel to build a MD GDOT application
Model Templates	Multi-Draw Fractionator	Perform CDU configuration
Model remplates	Blender	Perform Blender configuration
	HydroTreater	Perform Hydrotreater configuration
	What is DR	Recognize the need for DR
Dynamic Data	Objective Function for DR	Identify the object function for DR
Reconciliation (DR)	Dynamics in DR	Recognize the use of Dynamics in DR
	Purpose of DR	Identify the purpose for a DR
Model Diagnostic	Purpose of Model Diagnostic	Identify the purpose of Model Diagnostic
	GDOT vs RTO&CLP	Distinguish between GDOT and RTO&CLP
GDOT Olefin Template	Workflow	Identify the GDOT olefin workflow
	Olefin Templates	Identify available models in the GDOT Olefin model template
GDOT Project Deployment	Project Execution plan	Identify components of the project execution plan
	Benefits	Identify sources of benefits

SCOPE	TECHNICAL CONTENT	TEST OBJECTIVE
GDOT Project Deployment	Requirements	Identify the requirements for a successful
	Model Development	Explain the steps for model development
	Commissioning	Recognize the needs for close communication with planning and scheduling
Web Server & Visualizer	Components	Identify various GDOT web components
	Console vs Visualizer	Distinguish between GDOT console vs GDOT Web Visualizer
Mixed Integer Programming	Spare Capacity	Explain the use of spare capacity
	Binary Variables	Explain the binary variables in a MIP GDOT application

About Aspen Technology

Aspen Technology (AspenTech) is a leading software supplier for optimizing asset performance. Our products thrive in complex, industrial environments where it is critical to optimize the asset design, operation and maintenance lifecycle. AspenTech uniquely combines decades of process modeling expertise with machine learning. Our purpose-built software platform automates knowledge work and builds sustainable competitive advantage by delivering high returns over the entire asset lifecycle. As a result, companies in capital-intensive industries can maximize uptime and push the limits of performance, running their assets safer, greener, longer and faster. Visit AspenTech.com to find out more.

© 2020 Aspen Technology, Inc. AspenTech[®], Aspen[®], aspenONE[®], the Aspen leaf logo, the aspenONE logo and OPTIMIZE are trademarks of Aspen Technology, Inc. All rights reserved. AT-05199