(aspentech | Study Guide

Aspen Plus Study Guide Exam Prep for Users

Aspen[®] Knowledge | Learn. Apply. Succeed.

@aspentech | Study Guide

Exam Scope for Introduction to Process Modeling using Aspen Plus (EAP101)

- Properties Environment
- Simulation Environment
- □ Convergence
- □ Reporting

Grading

Grade	Weight	
Multiple choice	40%	
questions	40%	
Lab task	60%	
Total	100%	

AspenTech

Call | Email | Chat

Who can take this certification?

The certification is a must-have for any user new to Aspen Plus who wants to have the knowledge and tools needed to solve business problems.

Step 1: Take Class: Introduction to Process Modeling Using Aspen Plus (EAP101) – 3 Days

AspenTech offers a variety of delivery methods in which you can take training.

- Register for public training (face to face or virtual)
- Register for private training (face to face or virtual)
- Subscribe to eLearning (on-demand)

Step 2: Review Scope and Objectives

This guide contains 100% coverage of all objectives for the Aspen Plus certification exam. You can use as both a study tool and an on-the job reference.

Step 3: Take Aspen Plus certification exam

The total time for the certification exam is four hours.

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE
Explore Properties Environment	Startup Template	Select a startup template to begin a new simulation
	Component List	Create a component list
		Identify the different component databases available
	Physical Property Method	List the steps to establish physical properties
		Identify issues involved in the choice of a property method
		Define a property method
		Identify the different property methods available
		Explain the need for Henry's components
	Reporting	Summarize the different types of physical property data
		List the built-in analyses used for reporting physical properties
		Retrieve pure component properties from built in property databases
Explore	Unit Sets	Recognize the default unit sets
Environment		Customize unit sets
	Manipulate Flowsheet	Explain how unit operation models are organized
		Add unit operations to the flowsheet from the model palette
		Connect material streams to unit operation blocks
		Configure and customize flowsheet user preferences, options and default settings
		Unit Operations
	Mixer/Splitters	Explain when to use the SSplit block in a flowsheet
	Separators	Identify the key differences in the three separator blocks Flash2, Flash3 and Decanter

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE
Explore Simulation Environment	Separators	List which unit operation blocks can be used to specify how the components split to the outlet streams
		Configure a component splitter to separate component steams based on split fractions specified
	Exchangers	Identify the heat exchanger model used to model convective or radiant heat transfer across a surface
		Select the heat exchanger model that can be integrated with Aspen Exchanger Design and Rating (EDR) tools
		Explain how to specify a Heater block outlet stream to the dew point condition
		Recognize how the use of a Heat stream connected to a Heater block affects the input specifications
		Perform rigorous heat transfer calculations using EDR
	Columns	List the column unit operations that incorporate shortcut methods for Vapor/Liquid calculations
		Identify which unit operation block is used for most distillation column models
		Determine parameters required to solve a column Identify different types of column specifications available in RadFrac
		Identify different types of column specifications available in RadFrac
		Explain the function of the Column Analysis tool
		List the types of rigorous vapor-liquid fractionation operations that RadFrac can simulate
		Build different types of column using RadFrac and manipulate the column specifications to meet the process objective
		Plot temperature and composition results vs stage for a column
		Explain how to account for non-equilibrium stages in Rad-Frac

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE
Explore Simulation Environment	Columns	Describe the difference between On-Stage and Above-Stage
	Reactors	List the classes of reactor unit operations available in Aspen Plus
		Describe the characteristics of balanced based reactor models
		Explain how heat of reaction is calculated in Aspen Plus
		Identify which reactor models allow both equilibrium and kinetic based reactions
		Identify the option in RGibbs to insure both vapor and liquid phases are considered
		Summarize the options for entering custom reaction kinetics
		List the options for entering reaction data for a reversible reaction
		Identify the reactor models that require a Reaction ID to describe reactions
		Recognize which reaction model type that allows a mixture of Power Law, Equilibrium, LHHW and Custom reactions
		Build a Reaction ID to be used in a kinetic based reactor
	Pressure Changers	List situations where pressure changer blocks need to be included in a flowsheet
		Explain the difference between design and rating specifications for pump and compressor
		Describe the options for entering performance curve data for pump and compressor models
		Build a simple flowsheet for an expander/compressor
		Identify the main difference between the pipe and pipeline unit operation

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE
Explore Simulation Environment	Manipulators	List unit operations models that manipulate streams
		Build a flowsheet the duplicates a feed stream that is processed in different types of process units
	User Models	List the options to write custom unit operation models
		Identify the unit operation block that is a container for simulation objects such as streams, unit operations, etc.
Convergence	Control Panel	Analyze error and warning messages
		Recognize simulation sequence
		Identify automatically generated convergence blocks
		Identify tear streams
		Explain the concept of error/tolerance
	Convergence Methods	Configure the default tear convergence settings to increase maximum number of iterations
		List the variables tested for tear stream convergence
		List the default convergence methods
		Describe the purpose of the Secant method bracketing strategy
	Tear Stream	Specify a tear stream for a convergence block
		Illustrate reconciling of a tear stream

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE
Convergence	Convergence Results	Specify a tighter global flash tolerance
		Analyze the pattern of the graphical convergence history using the convergence monitor
		Identify the number of iterations made to reach convergence
		Illustrate the reduction of simulation time by reconciling a block
	Troubleshooting	Recognize the various troubleshooting tips in the Help documentation
		Troubleshoot the prepared simulations using common methods
Documentation	General	Use the Help menu
Explore Simulation Environment	n Analysis Tools	
	Sensitivity	List steps to create a new sensitivity
		Identify variables that can be defined as manipulated variables
		Analyze sensitivity results to find optimal operating conditions
		Identify if a design specification solution is feasible using sensitivity
		Recognize case studies
		Plot the results of a sensitivity block
		Explain tabulated Fortran expressions

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE
Explore Simulation Environment	Design Specification	Develop a design specification to get desired results
		Explain why design specification produces iteration
		List the approaches to view design specification results
		Analyze convergence issue caused by design specifications
		Troubleshoot convergence issue by changing default settings
	Calculators	Develop a calculator block with either Fortran syntax or Excel functions
		Recognize basic Fortran syntax and Excel functions
		Explain the use of parameters and local parameters
		Identify import variables and export variables
		Define location of a calculator block in an execution sequence
		Resolve errors caused by a calculator
Reporting	Stream Summary	Customize stream summary tables and save as new templates
		List steps to create new templates
		Explain how to add additional physical properties to the stream summary
		Explain the use for all options in Edit Stream Summary Template window
		Send stream summary to Excel and to Flowsheet (linked with Aspen Plus)
		Describe Import/Export user stream templates features

SCOPE	TECHNICAL CONTENT	COMPETENCY OBJECTIVE
Reporting	Custom Tables	Create custom tables
		Use custom tables on the flowsheet (as icon)
	Global Data	Display global stream data on flowsheets
		Display user-defined global stream data on flowsheets
		Explain how to change global stream data displayed decimal digits
	Property Sets	List steps to create new property sets
		Explain the use of property qualifiers
		List where to use property sets
	Model Summary	Customize model Summary table
		Send Model Summary table to Excel (linked with Aspen Plus)
	Miscellaneous	Use Check Status to check detailed information about errors or warning
		Report control panel messages in History file
		Report printable text file of input data and simulation results